A multivariate lesion symptom mapping toolbox and examination of lesion-volume biases and correction methods in lesion-symptom mapping

被引:116
|
作者
DeMarco, Andrew T. [1 ]
Turkeltaub, Peter E. [1 ,2 ]
机构
[1] Georgetown Univ, Dept Neurol, 4000 Reservoir Rd,Suite 145, Washington, DC 20007 USA
[2] MedStar Natl Rehabil Hosp, Res Div, Washington, DC USA
关键词
Aphasia; lesion-symptom mapping; lesion volume; support vector regression; SHORT-TERM-MEMORY; PHONOLOGICAL RETRIEVAL; MOTOR INTEGRATION; SPEECH REPETITION; APHASIA; LOCALIZATION; STROKE; COMPREHENSION; TOMOGRAPHY; ANATOMY;
D O I
10.1002/hbm.24289
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Lesion-symptom mapping has become a cornerstone of neuroscience research seeking to localize cognitive function in the brain by examining the sequelae of brain lesions. Recently, multivariate lesion-symptom mapping methods have emerged, such as support vector regression, which simultaneously consider many voxels at once when determining whether damaged regions contribute to behavioral deficits (Zhang, Kimberg, Coslett, Schwartz, & Wang, ). Such multivariate approaches are capable of identifying complex dependences that traditional mass-univariate approach cannot. Here, we provide a new toolbox for support vector regression lesion-symptom mapping (SVR-LSM) that provides a graphical interface and enhances the flexibility and rigor of analyses that can be conducted using this method. Specifically, the toolbox provides cluster-level family-wise error correction via permutation testing, the capacity to incorporate arbitrary nuisance models for behavioral data and lesion data and makes available a range of lesion volume correction methods including a new approach that regresses lesion volume out of each voxel in the lesion maps. We demonstrate these new tools in a cohort of chronic left-hemisphere stroke survivors and examine the difference between results achieved with various lesion volume control methods. A strong bias was found toward brain wide lesion-deficit associations in both SVR-LSM and traditional mass-univariate voxel-based lesion symptom mapping when lesion volume was not adequately controlled. This bias was corrected using three different regression approaches; among these, regressing lesion volume out of both the behavioral score and the lesion maps provided the greatest sensitivity in analyses.
引用
收藏
页码:4169 / 4182
页数:14
相关论文
共 50 条
  • [21] LESION-SYMPTOM MAPPING BASED ON STROKE OR GLIOMA: ETIOLOGY MATTERS!
    van Grinsven, E. E.
    Smits, A. R.
    van Kessel, E.
    Raemaekers, M.
    de Haan, E. H. F.
    Huenges-Wajer, I. M. C.
    Ruijters, V. J.
    Philippens, M. E. P.
    Verhoeff, J. J. C.
    Ramsey, N. F.
    Robe, P. A. J. T.
    Snijders, T. J.
    van Zandvoort, M. J. E.
    NEURO-ONCOLOGY, 2022, 24
  • [22] Disconnection somewhere down the line: Multivariate lesion-symptom mapping of the line bisection error
    Wiesen, Daniel
    Karnath, Hans-Otto
    Sperber, Christoph
    CORTEX, 2020, 133 : 120 - 132
  • [23] Focal left prefrontal lesions and cognitive impairment: A multivariate lesion-symptom mapping approach
    Arbula, Sandra
    Ambrosini, Ettore
    Della Puppa, Alessandro
    De Pellegrin, Serena
    Anglani, Mariagiulia
    Denaro, Luca
    Piccione, Francesco
    D'Avella, Domenico
    Semenza, Carlo
    Corbetta, Maurizio
    Vallesi, Antonino
    NEUROPSYCHOLOGIA, 2020, 136
  • [24] Corrections for multiple comparisons in voxel-based lesion-symptom mapping
    Mirman, Daniel
    Landrigan, Jon-Frederick
    Kokolis, Spiro
    Verillo, Sean
    Ferrara, Casey
    Pustina, Dorian
    NEUROPSYCHOLOGIA, 2018, 115 : 112 - 123
  • [25] Agrammatism and Paragrammatism: A Cortical Double Dissociation Revealed by Lesion-Symptom Mapping
    Matchin, William
    Basilakos, Alexandra
    Stark, Brielle C.
    Den Ouden, Dirk-Bart
    Fridriksson, Julius
    Hickok, Gregory
    NEUROBIOLOGY OF LANGUAGE, 2020, 1 (02): : 208 - 225
  • [26] A BAYESIAN ESTIMATION FORMULATION TO VOXEL-BASED LESION-SYMPTOM MAPPING
    Fall, Mame Diarra
    Dobigeon, Nicolas
    Auzou, Pascal
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 2201 - 2205
  • [27] Brain Infarct Segmentation and Registration on MRI or CT for Lesion-symptom Mapping
    Biesbroek, J. Matthijs
    Kuijf, Hugo J.
    Weaver, Nick A.
    Zhao, Lei
    Duering, Marco
    Biessels, Geert Jan
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2019, (151):
  • [28] VOXEL-BASED LESION-SYMPTOM MAPPING: A NONPARAMETRIC BAYESIAN APPROACH
    Fall, Mame Diarra
    Lavau, Emilie
    Auzou, Pascal
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 1050 - 1054
  • [29] Uncovering the Neuroanatomy of Core Language Systems Using Lesion-Symptom Mapping
    Mirman, Daniel
    Thye, Melissa
    CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE, 2018, 27 (06) : 455 - 461
  • [30] Influence of stroke infarct location on quality of life assessed in a multivariate lesion-symptom mapping study
    Alina Königsberg
    Andrew T. DeMarco
    Carola Mayer
    Anke Wouters
    Eckhard Schlemm
    Martin Ebinger
    Tae-Hee Cho
    Matthias Endres
    Jochen B. Fiebach
    Jens Fiehler
    Ivana Galinovic
    Josep Puig
    Vincent Thijs
    Robin Lemmens
    Keith W. Muir
    Norbert Nighoghossian
    Salvador Pedraza
    Claus Z. Simonsen
    Christian Gerloff
    Götz Thomalla
    Bastian Cheng
    Scientific Reports, 11