Depth-Sensitive Subsurface Imaging of Polymer Nanocomposites Using Second Harmonic Kelvin Probe Force Microscopy

被引:52
作者
Alejandro Castaneda-Uribe, Octavio [1 ,2 ]
Reifenberger, Ronald [3 ]
Raman, Arvind [4 ]
Avila, Alba [1 ,2 ]
机构
[1] Univ Los Andes, Dept Elect & Elect Engn, Bogota 11001, Colombia
[2] Univ Los Andes, Ctr Microelect CMUA, Bogota 11001, Colombia
[3] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA
[4] Purdue Univ, Sch Mech Engn, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
AFM; second harmonic; subsurface; depth sensitive; nanocomposites; CNT; polymer; CARBON NANOTUBE; GRAPHENE; FABRICATION; COMPOSITES; RESOLUTION; TOUGHNESS;
D O I
10.1021/nn507019c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We study the depth sensitivity and spatial resolution of subsurface imaging of polymer nanocomposites using second harmonic mapping in Kelvin Probe Force Microscopy (KPFM). This method allows the visualization of the clustering and,percolation of buried Single Walled Carbon Nanotubes (SWCNTs) via capacitance gradient (0c704 maps. We develop a multilayered sample where thin layers of neat Polyimide (PI) (similar to 80 nm per layer) are sequentially spin-coated on well-dispersed SWCNT/Polyimide (PI) nanoconnposite films. The multilayer nanocomposite system allows the acquisition of partial derivative C/partial derivative z images of three-dimensional percolating.networks of SWCNTs at different depths in the same region of the sample. We detect CNTs at a depth of similar to 430,nm, and notice that the spatial resolution progressively deteriorates with increasing depth of the buried CNTs. Computational trends of partial derivative C/partial derivative z vs CNT depth correlatethe sensitivity and depth resolution with field penetration and spreading, and enable.a possible approach to three-dimensional subsurface structure reconstruction. The results open the door to nondestructive, three-dimensional tomography and nanometrology techniques for nanocomposite applications.
引用
收藏
页码:2938 / 2947
页数:10
相关论文
共 48 条
[1]   Numerical simulations of electrostatic interactions between an atomic force microscopy tip and a dielectric sample in presence of buried nano-particles [J].
Arinero, R. ;
Riedel, C. ;
Guasch, C. .
JOURNAL OF APPLIED PHYSICS, 2012, 112 (11)
[2]  
Bara A, 2006, ESTC 2006: 1ST ELECTRONICS SYSTEMINTEGRATION TECHNOLOGY CONFERENCE, VOLS 1 AND 2, PROCEEDINGS, P334
[3]   Recent Advances in Research on Carbon Nanotube-Polymer Composites [J].
Byrne, Michele T. ;
Gun'ko, Yurii K. .
ADVANCED MATERIALS, 2010, 22 (15) :1672-1688
[4]   Sub-surface imaging of carbon nanotube-polymer composites using dynamic AFM methods [J].
Cadena, Maria J. ;
Misiego, Rocio ;
Smith, Kyle C. ;
Avila, Alba ;
Pipes, Byron ;
Reifenberger, Ron ;
Raman, Arvind .
NANOTECHNOLOGY, 2013, 24 (13)
[5]   Synthesis of antibacterial surfaces by plasma grafting of zinc oxide based nanocomposites onto polypropylene [J].
de Rancourt, Yoann ;
Couturaud, Benoit ;
Mas, Andre ;
Robin, Jean Jacques .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2013, 402 :320-326
[6]   Quantifying the dielectric constant of thick insulators using electrostatic force microscopy [J].
Fumagalli, L. ;
Gramse, G. ;
Esteban-Ferrer, D. ;
Edwards, M. A. ;
Gomila, G. .
APPLIED PHYSICS LETTERS, 2010, 96 (18)
[7]  
Fumagalli L., 2007, APPL PHYS LETT, V91
[8]   Nanoscale capacitance microscopy of thin dielectric films [J].
Gomila, G. ;
Toset, J. ;
Fumagalli, L. .
JOURNAL OF APPLIED PHYSICS, 2008, 104 (02)
[9]   Quantifying the dielectric constant of thick insulators by electrostatic force microscopy: effects of the microscopic parts of the probe [J].
Gramse, G. ;
Gomila, G. ;
Fumagalli, L. .
NANOTECHNOLOGY, 2012, 23 (20)
[10]  
Griffiths D.J, 1999, INTRO ELECTRODYNAMIC, P351