A deep learning-based computational prediction model for characterizing cellular biomarker distribution in tumor microenvironment

被引:0
|
作者
Peng, Zhengyao [1 ,2 ]
Bian, Chang [1 ,2 ]
Du, Yang [1 ,2 ]
Tian, Jie [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, CAS Key Lab Mol Imaging, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
[3] Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Sch Med Sci & Engn, Beijing 100191, Peoples R China
[4] Xidian Univ, Sch Life Sci & Technol, Xian 710071, Peoples R China
来源
MEDICAL IMAGING 2022: DIGITAL AND COMPUTATIONAL PATHOLOGY | 2022年 / 12039卷
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
tumor microenvironment; cellular biomarker; deep learning; semi-supervised training;
D O I
10.1117/12.2610640
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Evaluation of cancer cell and immune cell distribution in tumor microenvironment (TME) is one of the most important factors for guiding cancer immunotherapy and assessing therapeutic response. Multiplexed immunohistochemistry (mIHC) is often used to obtain the different types of cellular biomarker expression and distribution information in TME, but mIHC is limited by time-consuming and cost-intensive, and pathologists' objectives etc. In this work, we proposed a deep learning-based modified U-Net ( m-Unet), by replacing the original convolution sub-module with a modified block to predict the distribution of several typical cellular biomarkers' expression and distribution information in TME. We have demonstrated that our model can be trained in both fully supervised and semi-supervised manners. The model can extract segmentation information from Hematoxylin and Eosin (H&E) images, and predict the cellular biomarker distributions including panCK for colon cancer cells, CD3 and CD20 for tumor infiltrating lymphocytes (TILs) and DAPI for nucleus. We have demonstrated that our model can be trained in both fully supervised and semi-supervised manners and. the performance of the m-Unet is better than the U-Net in this work. The optimal prediction accuracy of m-Unet is 88.3% on the test dataset. In general, this model possesses the potential to assist the clinical TME analysis.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Deep Learning-Based Driving Maneuver Prediction System
    Ou, Chaojie
    Karray, Fakhri
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (02) : 1328 - 1340
  • [32] A Survey of Deep Learning-Based Information Cascade Prediction
    Wang, Zhengang
    Wang, Xin
    Xiong, Fei
    Chen, Hongshu
    SYMMETRY-BASEL, 2024, 16 (11):
  • [33] A deep learning-based framework for road traffic prediction
    Benarmas, Redouane Benabdallah
    Bey, Kadda Beghdad
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (05): : 6891 - 6916
  • [34] Deep Learning-Based Channel Prediction With Path Extraction
    Meliha, Mehdi
    Charge, Pascal
    Wang, Yide
    Bouzid, Salah Eddine
    Henry, Christophe
    Bourny, Christophe
    Tomaz, Henrique
    Chen, Yejian
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2025, 14 (03) : 891 - 895
  • [35] Deep Learning-Based Discrete Calibrated Survival Prediction
    Fuhlert, Patrick
    Ernst, Anne
    Dietrich, Esther
    Westhaeusser, Fabian
    Kloiber, Karin
    Bonn, Stefan
    2022 IEEE INTERNATIONAL CONFERENCE ON DIGITAL HEALTH (IEEE ICDH 2022), 2022, : 169 - 174
  • [36] Deep Learning-Based Advances in Protein Structure Prediction
    Pakhrin, Subash C.
    Shrestha, Bikash
    Adhikari, Badri
    KC, Dukka B.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (11)
  • [37] Deep learning-based prediction of ship transit time
    Yoo, Sang-Lok
    Kim, Kwang-Il
    OCEAN ENGINEERING, 2023, 280
  • [38] A Deep Learning-Based Approach for Foot Placement Prediction
    Lee, Sung-Wook
    Asbeck, Alan
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (08) : 4959 - 4966
  • [39] A deep learning-based framework for road traffic prediction
    Redouane Benabdallah Benarmas
    Kadda Beghdad Bey
    The Journal of Supercomputing, 2024, 80 : 6891 - 6916
  • [40] Deep Learning-Based Defect Prediction for Mobile Applications
    Jorayeva, Manzura
    Akbulut, Akhan
    Catal, Cagatay
    Mishra, Alok
    SENSORS, 2022, 22 (13)