Three-dimensional Quasi-geostrophic Staggered Vortex Arrays

被引:2
作者
Reinaud, Jean N. [1 ]
机构
[1] Univ St Andrews, Math Inst, St Andrews, Fife, Scotland
关键词
quasi-geostrophy; point vortex dynamics; equilibria; vortex arrays; NONLINEAR STABILITY; VORTICES; CONFIGURATIONS; ROTATION; POLYGON; MOTION;
D O I
10.1134/S156035472105004X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We determine and characterise relative equilibria for arrays of point vortices in a three-dimensional quasi-geostrophic flow. The vortices are equally spaced along two horizontal rings whose centre lies on the same vertical axis. An additional vortex may be placed along this vertical axis. Depending on the parameters defining the array, the vortices on the two rings are of equal or opposite sign. We address the linear stability of the point vortex arrays. We find both stable equilibria and unstable equilibria, depending on the geometry of the array. For unstable arrays, the instability may lead to the quasi-regular or to the chaotic motion of the point vortices. The linear stability of the vortex arrays depends on the number of vortices in the array, on the radius ratio between the two rings, on the vertical offset between the rings and on the vertical offset between the rings and the central vortex, when the latter is present. In this case the linear stability also depends on the strength of the central vortex. The non-linear evolution of a selection of unstable cases is presented exhibiting examples of quasi-regular motion and of chaotic motion.
引用
收藏
页码:505 / 525
页数:21
相关论文
共 41 条
[1]   Clusters of cyclones encircling Jupiter's poles [J].
Adriani, A. ;
Mura, A. ;
Orton, G. ;
Hansen, C. ;
Altieri, F. ;
Moriconi, M. L. ;
Rogers, J. ;
Eichstaedt, G. ;
Momary, T. ;
Ingersoll, A. P. ;
Filacchione, G. ;
Sindoni, G. ;
Tabataba-Vakili, F. ;
Dinelli, B. M. ;
Fabiano, F. ;
Bolton, S. J. ;
Connerney, J. E. P. ;
Atreya, S. K. ;
Lunine, J. I. ;
Tosi, F. ;
Migliorini, A. ;
Grassi, D. ;
Piccioni, G. ;
Noschese, R. ;
Cicchetti, A. ;
Plainaki, C. ;
Olivieri, A. ;
O'Neill, M. E. ;
Turrini, D. ;
Stefani, S. ;
Sordini, R. ;
Amoroso, M. .
NATURE, 2018, 555 (7695) :216-+
[2]  
[Anonymous], 1878, AM J SCI, DOI DOI 10.2475/AJS.S3-16.94.247
[3]   Stability of relative equilibria of three vortices [J].
Aref, Hassan .
PHYSICS OF FLUIDS, 2009, 21 (09)
[4]   Exact solutions for rotating vortex arrays with finite-area cores [J].
Crowdy, DG .
JOURNAL OF FLUID MECHANICS, 2002, 469 :209-235
[5]   The motion of point vortices on closed surfaces [J].
Dritschel, D. G. ;
Boatto, S. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 471 (2176)
[6]   Ring Configurations of Point Vortices in Polar Atmospheres [J].
Dritschel, David G. .
REGULAR & CHAOTIC DYNAMICS, 2021, 26 (05) :467-481
[7]   THE STABILITY AND ENERGETICS OF COROTATING UNIFORM VORTICES [J].
DRITSCHEL, DG .
JOURNAL OF FLUID MECHANICS, 1985, 157 (AUG) :95-134
[8]  
Havelock TH, 1931, PHILOS MAG, V11, P617
[9]  
Helmholtz H., 1858, J. Reine Angew. Math., V55, P25, DOI [10.1515/9783112336489-003, DOI 10.1515/CRLL.1858.55.25]
[10]  
Khazin L. G., 1976, Soviet Physics - Doklady, V21, P567