Conditions for ballisticity and invariance principle for random walk in non-elliptic random environment

被引:4
作者
Holmes, Mark [1 ]
Salisbury, Thomas S. [2 ]
机构
[1] Univ Melbourne, Sch Math & Stat, Melbourne, Vic, Australia
[2] York Univ, Dept Math & Stat, N York, ON, Canada
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2017年 / 22卷
基金
加拿大自然科学与工程研究理事会; 澳大利亚研究理事会;
关键词
random walk; non-elliptic random environment; zero-one law; ballisticity; invariance principle; PLANAR RANDOM-WALKS; ZERO-ONE LAW; PERCOLATION PROBABILITY; ORIENTED PERCOLATION; DIMENSIONS; BEHAVIOR; EXPONENTS;
D O I
10.1214/17-EJP107
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the asymptotic behaviour of random walks in i.i.d. non-elliptic random environments on Z(d). Standard conditions for ballisticity and the central limit theorem require ellipticity, and are typically non-local. We use oriented percolation and martingale arguments to find non-trivial local conditions for ballisticity and an annealed invariance principle in the non-elliptic setting. The use of percolation allows certain non-elliptic models to be treated even though ballisticity has not been proved for elliptic perturbations of these models.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] A strong invariance principle for the local time difference of a simple symmetric planar random walk
    Csaki, E
    Foldes, A
    Revesz, P
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 1998, 34 (1-3) : 25 - 39
  • [32] The invariance principle for associated random fields
    Kim, TS
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1996, 26 (04) : 1443 - 1454
  • [33] Invariance principle for the random conductance model
    Andres, S.
    Barlow, M. T.
    Deuschel, J. -D.
    Hambly, B. M.
    PROBABILITY THEORY AND RELATED FIELDS, 2013, 156 (3-4) : 535 - 580
  • [34] Invariance principle for the random conductance model
    S. Andres
    M. T. Barlow
    J.-D. Deuschel
    B. M. Hambly
    Probability Theory and Related Fields, 2013, 156 : 535 - 580
  • [35] Random walk in Markovian environment
    Dolgopyat, Dmitry
    Keller, Gerhard
    Liverani, Carlangelo
    ANNALS OF PROBABILITY, 2008, 36 (05) : 1676 - 1710
  • [36] On the zero-one law and the law of large numbers for random walk in mixing random environment
    Rassoul-Agha, F
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2005, 10 : 36 - 44
  • [37] CRITICAL RANDOM-WALK IN RANDOM ENVIRONMENT ON TREES
    PEMANTLE, R
    PERES, Y
    ANNALS OF PROBABILITY, 1995, 23 (01) : 105 - 140
  • [38] Random walk in a high density dynamic random environment
    den Hollander, Frank
    Kesten, Harry
    Sidoravicius, Vladas
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2014, 25 (04): : 785 - 799
  • [39] Invariance principle for the maximal position process of branching Brownian motion in random environment
    Hou, Haojie
    Ren, Yan-Xia
    Song, Renming
    ELECTRONIC JOURNAL OF PROBABILITY, 2023, 28
  • [40] QUENCHED INVARIANCE PRINCIPLE FOR RANDOM WALKS AMONG RANDOM DEGENERATE CONDUCTANCES
    Bella, Peter
    Schaffner, Mathias
    ANNALS OF PROBABILITY, 2020, 48 (01) : 296 - 316