Fabrication of positively charged nanofiltration membrane with uniform charge distribution by reversed interfacial polymerization for Mg2+/Li+ separation

被引:93
|
作者
Li, Yunhao [1 ,2 ]
Wang, Shuhao [3 ]
Wu, Wenyuan [1 ,4 ]
Yu, Haijun [1 ]
Che, Ruxin
Kang, Guodong [1 ]
Cao, Yiming [1 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, Dalian Natl Lab Clean Energy, Dalian 116023, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Zhejiang Univ, Coll Chem & Biol Engn, Hangzhou 310027, Peoples R China
[4] Dalian Jiaotong Univ, Sch Environm & Chem Engn, Dalian 116028, Peoples R China
关键词
Nanofiltration membrane; Mg2+/li(+)separation; Reversed interfacial polymerization; Uniform charge distribution; PHYSIOCHEMICAL PROPERTIES; POLYAMIDE; LITHIUM; OSMOSIS; BRINE; MAGNESIUM; TRANSPORT; RECOVERY; CHLORIDE; LAYER;
D O I
10.1016/j.memsci.2022.120809
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Nanofiltration is considered a promising technology for separation of multivalent/monovalent ions such as extracting lithium from Salt Lake brine with high Mg2+/Li+ ratio. However, the nanofiltration membranes fabricated via conventional interfacial polymerization process generally possess negatively charged surface and have low Mg2+/Li+ selectivity. Herein, we proposed a new and facile method, i.e., reversed interfacial poly-merization (RIP), to prepare nanofiltration membranes with positively charged surface and uniform charge distribution. The sequence of amine (polyethyleneimine, PEI) and acyl chloride (trimesoyl chloride, TMC) monomers on polysulfone support was reversed compared to the conventional interfacial polymerization (IP) process. Moreover, the solvent of amine monomer was acetone instead of water. The nanofiltration membranes fabricated by this method exhibited higher water flux (from 4.88 to 22.25 Lm(-2)h(-1)) and MgCl2 rejection (from 84.36% to 97.71%). Meanwhile, LiCl/MgCl2 separation factor in single salt solution reached up to 13.93, which was almost quadruple compared to the conventional control membrane. In addition, the developed nanofiltration membrane also exhibited an excellent separation selectivity (S-Li,S- Mg = 9.22) in mixture system (Mg2+/Li+ mass ratio of 20), which had good application potential in extracting lithium resources from Salt Lake brine.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Positively charged capillary nanofiltration membrane with high rejection for Mg2+and Ca2+and good separation for Mg2+and Li +
    Zhang, Hai-Zhen
    Xu, Zhen-Liang
    Ding, Hao
    Tang, Yong-Jian
    DESALINATION, 2017, 420 : 158 - 166
  • [42] High positively charged composite nanofiltration membranes modified by a novel bis-quaternary ammonium monomer for Li+ extraction from high Mg2+/Li+ ratio salt lakes
    Fan, Yaru
    Tian, Hongjing
    Wang, Kunpeng
    Zhou, Guoli
    Wang, Jingtao
    Li, Guosheng
    Cao, Yijun
    Wang, Yingwei
    Jiang, Xiaobin
    Kou, Weijie
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 358
  • [43] Crown ether-functionalized nanofiltration membranes with high ions selectivity for Li+/Mg2+ separation
    Jiang, Chi
    Bai, Shibo
    Li, Jiawang
    Wang, Ming
    Zhou, Yan
    Hou, Yingfei
    JOURNAL OF MEMBRANE SCIENCE, 2025, 714
  • [44] Efficient separation of Li+/Mg2+via positively charged TFN membrane based on the PEI interlayer
    Jia, Rui
    Wu, Liu-Kun
    Xu, Zhen-Liang
    Hedar, Mateen
    Luo, Li-Han
    Wu, Yu-Zhe
    Li, Hua-Xiang
    Tong, Yi-Hao
    Xu, Sun-Jie
    CHEMICAL ENGINEERING SCIENCE, 2024, 284
  • [45] MWCNTs-COOK-assisted high positively charged composite membrane: Accelerating Li+ enrichment and Mg2+ removal
    Xu, Ping
    Hong, Jun
    Xu, Zhenzhen
    Xia, Hong
    Ni, Qing-Qing
    COMPOSITES PART B-ENGINEERING, 2021, 212
  • [46] Nanofiltration membranes with sandwich-like mixed charge layers for high-efficiency Mg2+/Li+ separation
    Li, Yunhao
    Kuang, Wu
    Yu, Haijun
    Liu, Dandan
    Liu, Yanfang
    Kang, Guodong
    Liang, Xinmiao
    Cao, Yiming
    JOURNAL OF MEMBRANE SCIENCE, 2025, 722
  • [47] Integration of charge repulsion and size exclusion effects into the skin layer matrix for enhanced Mg2+/Li+ nanofiltration separation
    Mao, Xin
    Xu, Nuanyuan
    Shi, Xinyu
    Wen, Hui
    Liu, Changkun
    JOURNAL OF MEMBRANE SCIENCE, 2025, 713
  • [48] Dual-skin layer nanofiltration membranes for highly selective Li+/Mg2+ separation
    Yang, Zhao
    Fang, Wangxi
    Wang, Zhenyi
    Zhang, Ruolin
    Zhu, Yuzhang
    Jin, Jian
    JOURNAL OF MEMBRANE SCIENCE, 2021, 620
  • [49] Grafting modification of thin-film composite membrane with quaternary ammonium polyelectrolyte for Mg2+/Li+ separation
    Ren, Xiaomin
    Chen, Yingying
    Wang, Yu
    Fu, Hongyan
    Hu, Dan
    Feng, Xudong
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (02):
  • [50] Aza-crown ether-coupled polyamide nanofiltration membrane for efficient Li+/Mg2+separation
    Zha, Zhiyuan
    Li, Tingyu
    Hussein, Ismail
    Wang, Ying
    Zhao, Song
    JOURNAL OF MEMBRANE SCIENCE, 2024, 695