Fabrication of positively charged nanofiltration membrane with uniform charge distribution by reversed interfacial polymerization for Mg2+/Li+ separation

被引:91
|
作者
Li, Yunhao [1 ,2 ]
Wang, Shuhao [3 ]
Wu, Wenyuan [1 ,4 ]
Yu, Haijun [1 ]
Che, Ruxin
Kang, Guodong [1 ]
Cao, Yiming [1 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, Dalian Natl Lab Clean Energy, Dalian 116023, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Zhejiang Univ, Coll Chem & Biol Engn, Hangzhou 310027, Peoples R China
[4] Dalian Jiaotong Univ, Sch Environm & Chem Engn, Dalian 116028, Peoples R China
关键词
Nanofiltration membrane; Mg2+/li(+)separation; Reversed interfacial polymerization; Uniform charge distribution; PHYSIOCHEMICAL PROPERTIES; POLYAMIDE; LITHIUM; OSMOSIS; BRINE; MAGNESIUM; TRANSPORT; RECOVERY; CHLORIDE; LAYER;
D O I
10.1016/j.memsci.2022.120809
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Nanofiltration is considered a promising technology for separation of multivalent/monovalent ions such as extracting lithium from Salt Lake brine with high Mg2+/Li+ ratio. However, the nanofiltration membranes fabricated via conventional interfacial polymerization process generally possess negatively charged surface and have low Mg2+/Li+ selectivity. Herein, we proposed a new and facile method, i.e., reversed interfacial poly-merization (RIP), to prepare nanofiltration membranes with positively charged surface and uniform charge distribution. The sequence of amine (polyethyleneimine, PEI) and acyl chloride (trimesoyl chloride, TMC) monomers on polysulfone support was reversed compared to the conventional interfacial polymerization (IP) process. Moreover, the solvent of amine monomer was acetone instead of water. The nanofiltration membranes fabricated by this method exhibited higher water flux (from 4.88 to 22.25 Lm(-2)h(-1)) and MgCl2 rejection (from 84.36% to 97.71%). Meanwhile, LiCl/MgCl2 separation factor in single salt solution reached up to 13.93, which was almost quadruple compared to the conventional control membrane. In addition, the developed nanofiltration membrane also exhibited an excellent separation selectivity (S-Li,S- Mg = 9.22) in mixture system (Mg2+/Li+ mass ratio of 20), which had good application potential in extracting lithium resources from Salt Lake brine.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] A Molecular Model for Understanding the Membrane Separation of Li+/Mg2+
    Chen, Yuxin
    Tao, Haolan
    Cheng, Jin
    Lin, Sen
    Lian, Cheng
    Liu, Honglai
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 62 (21) : 8433 - 8443
  • [32] Enhanced Mg2+/Li+ separation by nanofiltration membrane through surface modification using spirocyclic diamine
    Guo, Xiang
    Zhao, Bin
    Wang, Liang
    Zhang, Zhaohui
    Li, Jixiang
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 364
  • [33] Incorporation of crown ether into PEI-polyamide nanofiltration membrane for efficient Mg2+/Li+ separation
    Liu, Shuyang
    Wang, Mingxia
    Dong, Linfang
    Cui, Zhenyu
    He, Benqiao
    Li, Jianxin
    Yan, Feng
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 360
  • [34] Purity metric for evaluating Li+/Mg2+ separation performance of nanofiltration membranes
    He, Rongrong
    Li, Wei
    Zhu, Junyong
    He, Tao
    DESALINATION AND WATER TREATMENT, 2025, 321
  • [35] Improving Mg2+/Li+ separation performance of polyamide nanofiltration membrane by swelling-embedding-shrinking strategy
    Li, Hengyu
    Li, Yunhao
    Li, Meng
    Jin, Yan
    Kang, Guodong
    Cao, Yiming
    JOURNAL OF MEMBRANE SCIENCE, 2023, 669
  • [36] Polyethyleneimine (PEI) based positively charged thin film composite polyamide (TFC-PA) nanofiltration (NF) membranes for effective Mg2+/Li+ separation
    Wang, Qingyi
    Wang, Yuyang
    Huang, Yangxiang
    Wang, Huimin
    Gao, Yang
    Zhao, Mingyu
    Tu, Longdou
    Xue, Lixin
    Gao, Congjie
    DESALINATION, 2023, 565
  • [37] Recent advances of thin film composite nanofiltration membranes for Mg2+/ Li+ separation
    Peng, Hao Yi
    Lau, Siew Kei
    Yong, Wai Fen
    ADVANCED MEMBRANES, 2024, 4
  • [38] Molecular simulation of carbon nanotube membrane for Li+ and Mg2+ separation
    Yang, Dengfeng
    Liu, Qingzhi
    Li, Hongman
    Gao, Congjie
    JOURNAL OF MEMBRANE SCIENCE, 2013, 444 : 327 - 331
  • [39] Efficient separation of Li+/Mg2+via positively charged TFN membrane based on the PEI interlayer
    Jia, Rui
    Wu, Liu-Kun
    Xu, Zhen-Liang
    Hedar, Mateen
    Luo, Li-Han
    Wu, Yu-Zhe
    Li, Hua-Xiang
    Tong, Yi-Hao
    Xu, Sun-Jie
    CHEMICAL ENGINEERING SCIENCE, 2024, 284
  • [40] MWCNTs-COOK-assisted high positively charged composite membrane: Accelerating Li+ enrichment and Mg2+ removal
    Xu, Ping
    Hong, Jun
    Xu, Zhenzhen
    Xia, Hong
    Ni, Qing-Qing
    COMPOSITES PART B-ENGINEERING, 2021, 212