Fabrication of positively charged nanofiltration membrane with uniform charge distribution by reversed interfacial polymerization for Mg2+/Li+ separation

被引:91
|
作者
Li, Yunhao [1 ,2 ]
Wang, Shuhao [3 ]
Wu, Wenyuan [1 ,4 ]
Yu, Haijun [1 ]
Che, Ruxin
Kang, Guodong [1 ]
Cao, Yiming [1 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, Dalian Natl Lab Clean Energy, Dalian 116023, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Zhejiang Univ, Coll Chem & Biol Engn, Hangzhou 310027, Peoples R China
[4] Dalian Jiaotong Univ, Sch Environm & Chem Engn, Dalian 116028, Peoples R China
关键词
Nanofiltration membrane; Mg2+/li(+)separation; Reversed interfacial polymerization; Uniform charge distribution; PHYSIOCHEMICAL PROPERTIES; POLYAMIDE; LITHIUM; OSMOSIS; BRINE; MAGNESIUM; TRANSPORT; RECOVERY; CHLORIDE; LAYER;
D O I
10.1016/j.memsci.2022.120809
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Nanofiltration is considered a promising technology for separation of multivalent/monovalent ions such as extracting lithium from Salt Lake brine with high Mg2+/Li+ ratio. However, the nanofiltration membranes fabricated via conventional interfacial polymerization process generally possess negatively charged surface and have low Mg2+/Li+ selectivity. Herein, we proposed a new and facile method, i.e., reversed interfacial poly-merization (RIP), to prepare nanofiltration membranes with positively charged surface and uniform charge distribution. The sequence of amine (polyethyleneimine, PEI) and acyl chloride (trimesoyl chloride, TMC) monomers on polysulfone support was reversed compared to the conventional interfacial polymerization (IP) process. Moreover, the solvent of amine monomer was acetone instead of water. The nanofiltration membranes fabricated by this method exhibited higher water flux (from 4.88 to 22.25 Lm(-2)h(-1)) and MgCl2 rejection (from 84.36% to 97.71%). Meanwhile, LiCl/MgCl2 separation factor in single salt solution reached up to 13.93, which was almost quadruple compared to the conventional control membrane. In addition, the developed nanofiltration membrane also exhibited an excellent separation selectivity (S-Li,S- Mg = 9.22) in mixture system (Mg2+/Li+ mass ratio of 20), which had good application potential in extracting lithium resources from Salt Lake brine.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Low-temperature regulated interfacial polymerization of nanofiltration membrane for efficient Li+/Mg2+separation
    Duan, Shaofan
    Jiang, Shuai
    Li, Zhan
    Zhang, Pengfei
    Guan, Kecheng
    Xu, Ping
    Matsuyama, Hideto
    DESALINATION, 2025, 597
  • [22] Preparation of Electro- nanofiltration Membranes with High Li+/Mg2+ Separation Performance via Sequential Interfacial Polymerization
    Liu, Huili
    Wang, Jing
    Chen, Jiashuai
    Song, Zhihao
    Jiang, Yumeng
    Guo, Zhiyuan
    Zhang, Panpan
    Ji, Zhiyong
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2024, 45 (06):
  • [23] Nanofiltration membrane comprising structural regulator Cyclen for efficient Li+/Mg2+ separation
    Li, Tingyu
    Zhang, Xinzhu
    Zhang, Yu
    Wang, Jixiao
    Wang, Zhi
    Zhao, Song
    DESALINATION, 2023, 556
  • [24] "Bridge" graphene oxide modified positive charged nanofiltration thin membrane with high efficiency for Mg2+/Li+ separation
    Xu, Ping
    Hong, Jun
    Qian, Xiaoming
    Xu, Zhenzhen
    Xia, Hong
    Ni, Qing-Qing
    DESALINATION, 2020, 488 (488)
  • [25] Highly positively charged nanofiltration membrane through bis-quaternary ammonium modification for Li+/Mg2+separation
    Zhao, Yang
    Wu, Tao
    Wang, Yanliang
    Feng, Zimo
    Cheng, Lijuan
    Zheng, Yu
    Wang, Hui
    Xu, Kai
    Zhang, Runnan
    Jiang, Zhongyi
    DESALINATION, 2025, 603
  • [26] Fabrication of highly positively charged nanofiltration membranes by novel interfacial polymerization: Accelerating Mg2+removal and Li plus enrichment
    Xu, Ping
    Gonzales, Ralph Rolly
    Hong, Jun
    Guan, Kecheng
    Chiao, Yu-Hsuan
    Mai, Zhaohuan
    Li, Zhan
    Rajabzadeh, Saeid
    Matsuyama, Hideto
    JOURNAL OF MEMBRANE SCIENCE, 2023, 668
  • [27] Janus charged nanofiltration membranes modified with amino polymer brush for enhanced Mg2+/Li+ separation
    Hu, Dan
    Pan, Shiqi
    Chen, Yingying
    Wang, Yu
    Ma, Ruiqi
    Liu, Chunmiao
    Feng, Xudong
    Lin, Yakai
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 361
  • [28] Positively charged zwitterion-carbon nitride functionalized nanofiltration membranes with excellent separation performance of Mg2+/Li+ and good antifouling properties
    Bi, Qiuyan
    Zhang, Chao
    Liu, Jiandong
    Liu, Xingliang
    Xu, Shiai
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 257
  • [29] Fabrication of positively charged composite nanofiltration membranes with "multilayer interlocking" structure based on ZIF-8 layer anchored constrained growth strategy for Mg2+/Li+ separation
    Tian, Xuyong
    Ji, Dawei
    Feng, Haowei
    Lin, Weijia
    Wang, Chunlei
    Wei, Liying
    Shu, Wei
    Xiao, Changfa
    JOURNAL OF MEMBRANE SCIENCE, 2025, 713
  • [30] Electro-nanofiltration membranes with high Li+/Mg2+ selectivity prepared via sequential interfacial polymerization
    Chen, Jiashuai
    Wang, Jing
    Ji, Zhi-Yong
    Guo, Zhiyuan
    Zhang, Panpan
    Huang, Zhihui
    DESALINATION, 2023, 549