Learning without Recall by Random Walks on Directed Graphs

被引:0
作者
Rahimian, M. A. [1 ]
Shahrampour, S. [1 ]
Jadbabaie, A. [1 ]
机构
[1] Univ Penn, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA
来源
2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC) | 2015年
关键词
NETWORKS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider a network of agents that aim to learn some unknown state of the world using private observations and exchange of beliefs. At each time, agents observe private signals generated based on the true unknown state. Each agent might not be able to distinguish the true state based only on her private observations. This occurs when some other states are observationally equivalent to the true state from the agent's perspective. To overcome this shortcoming, agents must communicate with each other to benefit from local observations. We propose a model where each agent selects one of her neighbors randomly at each time. Then, she refines her opinion using her private signal and the prior of that particular neighbor. The proposed rule can be thought of as a Bayesian agent who cannot recall the priors based on which other agents make inferences. This learning without recall approach preserves some aspects of the Bayesian inference while being computationally tractable. By establishing a correspondence with a random walk on the network graph, we prove that under the described protocol, agents learn the truth exponentially fast in the almost sure sense. The asymptotic rate is expressed as the sum of the relative entropies between the signal structures of every agent weighted by the stationary distribution of the random walk.
引用
收藏
页码:5538 / 5543
页数:6
相关论文
共 28 条
[1]  
Alanyali M, 2004, P AMER CONTR CONF, P5369
[2]  
[Anonymous], 2006, Elements of Information Theory
[3]  
[Anonymous], ARXIV14098606
[4]  
[Anonymous], 1999, Markov Chains
[5]   MERGING OF OPINIONS WITH INCREASING INFORMATION [J].
BLACKWELL, D ;
DUBINS, L .
ANNALS OF MATHEMATICAL STATISTICS, 1962, 33 (03) :882-&
[6]   ASYMPTOTIC AGREEMENT IN DISTRIBUTED ESTIMATION [J].
BORKAR, V ;
VARAIYA, PP .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1982, 27 (03) :650-655
[7]   Randomized gossip algorithms [J].
Boyd, Stephen ;
Ghosh, Arpita ;
Prabhakar, Balaji ;
Shah, Devavrat .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (06) :2508-2530
[8]  
Bullo F, 2009, PRINC SER APPL MATH, P1
[9]  
Chamley C. P., 2004, Rational herds: Economic models of social learning
[10]   On Learning With Finite Memory [J].
Drakopoulos, Kimon ;
Ozdaglar, Asuman ;
Tsitsiklis, John N. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (10) :6859-6872