Gold nanoparticle biodissolution by a freshwater macrophyte and its associated microbiome

被引:71
作者
Avellan, Astrid [1 ,2 ]
Simonin, Marie [1 ,3 ]
McGivney, Eric [1 ,2 ]
Bossa, Nathan [1 ,4 ]
Spielman-Sun, Eleanor [1 ,2 ]
Rocca, Jennifer D. [3 ]
Bernhardt, Emily S. [1 ,3 ]
Geitner, Nicholas K. [1 ,4 ]
Unrine, Jason M. [1 ,5 ]
Wiesner, Mark R. [1 ,4 ]
Lowry, Gregory, V [1 ,2 ]
机构
[1] Ctr Environm Implicat NanoTechnol CEINT, Durham, NC 27710 USA
[2] Carnegie Mellon Univ, Dept Civil & Environm Engn, Pittsburgh, PA 15213 USA
[3] Duke Univ, Dept Biol, Durham, NC USA
[4] Duke Univ, Civil & Environm Engn, Durham, NC USA
[5] Univ Kentucky, Dept Plant & Soil Sci, Lexington, KY USA
基金
美国国家科学基金会;
关键词
DAPHNIA-MAGNA; AQUATIC MACROPHYTES; FATE; CYANIDE; SILVER; AU; ENVIRONMENT; AG; BIOAVAILABILITY; MICROORGANISMS;
D O I
10.1038/s41565-018-0231-y
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Predicting nanoparticle fate in aquatic environments requires mimicking of ecosystem complexity to observe the geochemical processes affecting their behaviour. Here, 12 nm Au nanoparticles were added weekly to large-scale freshwater wetland mesocosms. After six months, similar to 70% of Au was associated with the macrophyte Egeria densa, where, despite the thermodynamic stability of Au-0 in water, the pristine Au-0 nanoparticles were fully oxidized and complexed to cyanide, hydroxyls or thiol ligands. Extracted biofilms growing on E. densa leaves were shown to dissolve Au nanoparticles within days. The Au biodissolution rate was highest for the biofilm with the lowest prevalence of metal-resistant taxa but the highest ability to release cyanide, known to promote Au-0 oxidation and complexation. Macrophytes and the associated microbiome thus form a biologically active system that can be a major sink for nanoparticle accumulation and transformations. Nanoparticle biotransformation in these compartments should not be ignored, even for nanoparticles commonly considered to be stable in the environment.
引用
收藏
页码:1072 / +
页数:8
相关论文
共 60 条
[1]   An adaptable mesocosm platform for performing integrated assessments of nanomaterial risk in complex environmental systems [J].
Auffan, Melanie ;
Tella, Marie ;
Santaella, Catherine ;
Brousset, Lenka ;
Pailles, Christine ;
Barakat, Mohamed ;
Espinasse, Benjamin ;
Artells, Ester ;
Issartel, Julien ;
Masion, Armand ;
Rose, Jerome ;
Wiesner, Mark R. ;
Achouak, Wafa ;
Thiery, Alain ;
Bottero, Jean-Yves .
SCIENTIFIC REPORTS, 2014, 4
[2]   Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective [J].
Auffan, Melanie ;
Rose, Jerome ;
Bottero, Jean-Yves ;
Lowry, Gregory V. ;
Jolivet, Jean-Pierre ;
Wiesner, Mark R. .
NATURE NANOTECHNOLOGY, 2009, 4 (10) :634-641
[3]   Thiosulfate leaching of gold - A review [J].
Aylmore, MG ;
Muir, DM .
MINERALS ENGINEERING, 2001, 14 (02) :135-174
[4]   Toxicity Assessments of Multisized Gold and Silver Nanoparticles in Zebrafish Embryos [J].
Bar-Ilan, Ofek ;
Albrecht, Ralph M. ;
Fako, Valerie E. ;
Furgeson, Darin Y. .
SMALL, 2009, 5 (16) :1897-1910
[5]   Trophic transfer and effects of gold nanoparticles (AuNPs) in Gammarus fossarum from contaminated periphytic biofilm [J].
Baudrimont, Magalie ;
Andrei, Jennifer ;
Mornet, Stephane ;
Gonzalez, Patrice ;
Mesmer-Dudons, Nathalie ;
Gourves, Pierre-Yves ;
Jaffal, Ali ;
Dedourge-Geffard, Odile ;
Geffard, Alain ;
Geffard, Olivier ;
Garric, Jeanne ;
Feurtet-Mazel, Agnes .
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2018, 25 (12) :11181-11191
[6]   Biomobilization of silver, gold, and platinum from solid waste materials by HCN-forming microorganisms [J].
Brandl, Helmut ;
Lehmann, Stefan ;
Faramarzi, Mohammad A. ;
Martinelli, Daniel .
HYDROMETALLURGY, 2008, 94 (1-4) :14-17
[7]   Surface Charge Controls the Fate of Au Nanorods in Saline Estuaries [J].
Burns, Justina M. ;
Pennington, Paul L. ;
Sisco, Patrick N. ;
Frey, Rebecca ;
Kashiwada, Shosaku ;
Fulton, Michael H. ;
Scott, Geoffrey I. ;
Decho, Alan W. ;
Murphy, Catherine J. ;
Shaw, Timothy J. ;
Ferry, John L. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (22) :12844-12851
[8]   QIIME allows analysis of high-throughput community sequencing data [J].
Caporaso, J. Gregory ;
Kuczynski, Justin ;
Stombaugh, Jesse ;
Bittinger, Kyle ;
Bushman, Frederic D. ;
Costello, Elizabeth K. ;
Fierer, Noah ;
Pena, Antonio Gonzalez ;
Goodrich, Julia K. ;
Gordon, Jeffrey I. ;
Huttley, Gavin A. ;
Kelley, Scott T. ;
Knights, Dan ;
Koenig, Jeremy E. ;
Ley, Ruth E. ;
Lozupone, Catherine A. ;
McDonald, Daniel ;
Muegge, Brian D. ;
Pirrung, Meg ;
Reeder, Jens ;
Sevinsky, Joel R. ;
Tumbaugh, Peter J. ;
Walters, William A. ;
Widmann, Jeremy ;
Yatsunenko, Tanya ;
Zaneveld, Jesse ;
Knight, Rob .
NATURE METHODS, 2010, 7 (05) :335-336
[9]   Emerging Contaminant or an Old Toxin in Disguise? Silver Nanoparticle Impacts on Ecosystems [J].
Colman, Benjamin P. ;
Espinasse, Benjamin ;
Richardson, Curtis J. ;
Matson, Cole W. ;
Lowry, Gregory V. ;
Hunt, Dana E. ;
Wiesner, Mark R. ;
Bernhardt, Emily S. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (09) :5229-5236
[10]   Modeling Nanomaterial Environmental Fate in Aquatic Systems [J].
Dale, Amy L. ;
Casman, Elizabeth A. ;
Lowry, Gregory V. ;
Lead, Jamie R. ;
Viparelli, Enrica ;
Baalousha, Mohammed .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (05) :2587-2593