Predicting vaccine hesitancy from area-level indicators: A machine learning approach

被引:19
作者
Carrieri, Vincenzo [1 ,2 ,3 ]
Lagravinese, Raffele [4 ]
Resce, Giuliano [5 ]
机构
[1] Magna Graecia Univ Catanzaro, Dept Law Econ & Sociol, Catanzaro, Italy
[2] RWI Essen, Essen, Germany
[3] IZA, Bonn, Germany
[4] Univ Bari Aldo Moro, Dept Econ & Finance, Bari, Italy
[5] Univ Molise, Dept Econ, Via F de Sanctis, I-86100 Campobasso, Italy
关键词
area-level indicators; machine learning; vaccine hesitancy;
D O I
10.1002/hec.4430
中图分类号
F [经济];
学科分类号
02 ;
摘要
Vaccine hesitancy (VH) might represent a serious threat to the next COVID-19 mass immunization campaign. We use machine learning algorithms to predict communities at a high risk of VH relying on area-level indicators easily available to policymakers. We illustrate our approach on data from child immunization campaigns for seven nonmandatory vaccines carried out in 6062 Italian municipalities in 2016. A battery of machine learning models is compared in terms of area under the receiver operating characteristics curve. We find that the Random Forest algorithm best predicts areas with a high risk of VH improving the unpredictable baseline level by 24% in terms of accuracy. Among the area-level indicators, the proportion of waste recycling and the employment rate are found to be the most powerful predictors of high VH. This can support policymakers to target area-level provaccine awareness campaigns.
引用
收藏
页码:3248 / 3256
页数:9
相关论文
共 39 条
[31]   COVID-19 vaccine hesitancy in a representative working-age population in France: a survey experiment based on vaccine characteristics [J].
Schwarzinger, Michael ;
Watson, Verity ;
Arwidson, Pierre ;
Alla, Francois ;
Luchini, Stephane .
LANCET PUBLIC HEALTH, 2021, 6 (04) :E210-E221
[32]   Machine learning approaches to the social determinants of health in the health and retirement study [J].
Seligman, Benjamin ;
Tuljapurkar, Shripad ;
Rehkopf, David .
SSM-POPULATION HEALTH, 2018, 4 :95-99
[34]  
Venables W.N., 2002, Modern Applied Statistics with S, V4th ed., DOI DOI 10.1007/978-0-387-21706-2
[35]   Institutional trust and misinformation in the response to the 2018-19 Ebola outbreak in North Kivu, DR Congo: a population-based survey [J].
Vinck, Patrick ;
Pham, Phuong N. ;
Bindu, Kenedy K. ;
Bedford, Juliet ;
Nilles, Eric J. .
LANCET INFECTIOUS DISEASES, 2019, 19 (05) :529-536
[36]   The French public's attitudes to a future COVID-19 vaccine: The politicization of a public health issue [J].
Ward, Jeremy K. ;
Alleaume, Caroline ;
Peretti-Watel, Patrick .
SOCIAL SCIENCE & MEDICINE, 2020, 265
[37]  
World Health Organization, 2019, CLASS DIAB MELL
[38]   Prediction models for diagnosis and prognosis of covid-19 infection: systematic review and critical appraisal [J].
Wynants, Laure ;
Van Calster, Ben ;
Collins, Gary S. ;
Riley, Richard D. ;
Heinze, Georg ;
Schuit, Ewoud ;
Albu, Elena ;
Arshi, Banafsheh ;
Bellou, Vanesa ;
Bonten, Marc M. J. ;
Dahly, Darren L. ;
Damen, Johanna A. ;
Debray, Thomas P. A. ;
de Jong, Valentijn M. T. ;
De Vos, Maarten ;
Dhiman, Paula ;
Ensor, Joie ;
Gao, Shan ;
Haller, Maria C. ;
Harhay, Michael O. ;
Henckaerts, Liesbet ;
Heus, Pauline ;
Hoogland, Jeroen ;
Hudda, Mohammed ;
Jenniskens, Kevin ;
Kammer, Michael ;
Kreuzberger, Nina ;
Lohmann, Anna ;
Levis, Brooke ;
Luijken, Kim ;
Ma, Jie ;
Martin, Glen P. ;
McLernon, David J. ;
Andaur Navarro, Constanza L. ;
Reitsma, Johannes B. ;
Sergeant, Jamie C. ;
Shi, Chunhu ;
Skoetz, Nicole ;
Smits, Luc J. M. ;
Snell, Kym I. E. ;
Sperrin, Matthew ;
Spijker, Rene ;
Steyerberg, Ewout W. ;
Takada, Toshihiko ;
Tzoulaki, Ioanna ;
van Kuijk, Sander M. J. ;
van Bussel, Bas C. T. ;
van der Horst, Iwan C. C. ;
Reeve, Kelly ;
van Royen, Florien S. .
BMJ-BRITISH MEDICAL JOURNAL, 2020, 369
[39]   Attitudes to vaccination: A critical review [J].
Yaqub, Ohid ;
Castle-Clarke, Sophie ;
Sevdalis, Nick ;
Chataway, Joanna .
SOCIAL SCIENCE & MEDICINE, 2014, 112 :1-11