Resonant 1-soliton solution in anti-cubic nonlinear medium with perturbations

被引:133
作者
Biswas, Anjan [1 ,2 ]
Zhou, Qin [3 ]
Moshokoa, Seithuti P. [1 ]
Triki, Houria [4 ]
Belic, Milivoj [5 ]
Alqahtani, Rubayyi T. [2 ]
机构
[1] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
[2] Al Imam Mohammad Ibn Saud Islamic Univ, Coll Sci, Dept Math & Stat, Riyadh 13318, Saudi Arabia
[3] Wuhan Donghu Univ, Sch Elect & Informat Engn, Wuhan 430212, Hubei, Peoples R China
[4] Badji Mokhtar Univ, Fac Sci, Dept Phys, Radiat Phys Lab, POB 12, Annaba 23000, Algeria
[5] Texas A&M Univ Qatar, Sci Program, POB 23874, Doha, Qatar
来源
OPTIK | 2017年 / 145卷
关键词
Solitons; Semi-inverte variation; Anti-cubic law; SEMI-INVERSE METHOD; SCHRODINGER-EQUATION; VARIATIONAL PRINCIPLE; SOLITONS;
D O I
10.1016/j.ijleo.2017.07.036
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper derives bright 1-soliton solution to the resonant nonlinear Schrlidinger's equation that is studied with anti-cubic nonlinearity. The semi-inverse variational principle is adopted to secure analytical solution to the model. The parametric restrictions that emerge for the existence of solitons are also presented. (C) 2017 Elsevier GmbH. All rights reserved.
引用
收藏
页码:14 / 17
页数:4
相关论文
共 10 条
[1]  
Biswas A, 2013, Quant Phys Lett, V1, P79
[2]   Optical solitons with anti-cubic nonlinearity by extended trial equation method [J].
Ekici, Mehmet ;
Mirzazadeh, Mohammad ;
Sonmezoglu, Abdullah ;
Ullah, Malik Zaka ;
Zhou, Qin ;
Triki, Houria ;
Moshokoa, Seithuti P. ;
Biswas, Anjan .
OPTIK, 2017, 136 :368-373
[3]   Envelope solitons of nonlinear Schrodinger equation with an anti-cubic nonlinearity [J].
Fedele, R ;
Schamel, H ;
Karpman, VI ;
Shukla, PK .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (04) :1169-1173
[4]   Optical solitons with anti-cubic nonlinearity using three integration schemes [J].
Jawad, Anwar Ja'afar Mohamad ;
Mirzazadeh, Mohammad ;
Zhou, Qin ;
Biswas, Anjan .
SUPERLATTICES AND MICROSTRUCTURES, 2017, 105 :1-10
[5]   ON THE SEMI-INVERSE METHOD AND VARIATIONAL PRINCIPLE [J].
Li, Xue-Wei ;
Li, Ya ;
He, Ji-Huan .
THERMAL SCIENCE, 2013, 17 (05) :1565-1568
[6]   Application of He's semi-inverse method to the nonlinear Schrodinger equation [J].
Ozis, Turgut ;
Yidirim, Ahmet .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 54 (7-8) :1039-1042
[7]   TEMPORAL SOLITONS OF MODIFIED COMPLEX GINZBURG LANDAU EQUATION [J].
Shwetanshumala, S. .
PROGRESS IN ELECTROMAGNETICS RESEARCH LETTERS, 2008, 3 :17-24
[8]  
Wu Y, 2009, INT J NONLIN SCI NUM, V10, P1245
[9]   A semi-inverse variational method for generating the bound state energy eigenvalues in a quantum system: The Schrodinger equation [J].
Zerarka, A. ;
Libarir, K. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (07) :3195-3199
[10]  
Zheng CB, 2009, INT J NONLIN SCI NUM, V10, P1369