ON THE UNCONDITIONAL UNIQUENESS OF SOLUTIONS TO THE INFINITE RADIAL CHERN-SIMONS-SCHRODINGER HIERARCHY

被引:25
作者
Chen, Xuwen [1 ]
Smith, Paul [2 ]
机构
[1] Brown Univ, Dept Math, Providence, RI 02912 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
Chern-Simons-Schrodinger system; Chern-Simons-Schrodinger hierarchy; unconditional uniqueness; GROSS-PITAEVSKII EQUATION; MEAN-FIELD LIMIT; ELECTRICALLY CHARGED VORTICES; QUANTUM BOLTZMANN-EQUATION; RIGOROUS DERIVATION; VORTEX SOLITONS; DYNAMICS; BOSONS; EVOLUTION;
D O I
10.2140/apde.2014.7.1683
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we establish the unconditional uniqueness of solutions to an infinite radial Chern-Simons-Schrodinger (IRCSS) hierarchy in two spatial dimensions. The IRCSS hierarchy is a system of infinitely many coupled PDEs that describes the limiting Chern-Simons-Schrodinger dynamics of infinitely many interacting anyons. The anyons are two-dimensional objects that interact through a self-generated field. Due to the interactions with the self-generated field, the IRCSS hierarchy is a system of nonlinear PDEs, which distinguishes it from the linear infinite hierarchies studied previously. Factorized solutions of the IRCSS hierarchy are determined by solutions of the Chern-Simons-Schrodinger system. Our result therefore implies the unconditional uniqueness of solutions to the radial Chern-Simons-Schrodinger system as well.
引用
收藏
页码:1683 / 1712
页数:30
相关论文
共 77 条
[1]   Rigorous derivation of the cubic NLS in dimension one [J].
Adami, Riccardo ;
Golse, Francois ;
Teta, Alessandro .
JOURNAL OF STATISTICAL PHYSICS, 2007, 127 (06) :1193-1220
[2]   Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states [J].
Ammari, Z. ;
Nier, F. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2011, 95 (06) :585-626
[3]   Mean Field Limit for Bosons and Infinite Dimensional Phase-Space Analysis [J].
Ammari, Zied ;
Nier, Francis .
ANNALES HENRI POINCARE, 2008, 9 (08) :1503-1574
[4]  
[Anonymous], J EUR MATH IN PRESS
[5]  
[Anonymous], T AM MATH S IN PRESS
[6]   THE HOMOGENEOUS BOLTZMANN HIERARCHY AND STATISTICAL SOLUTIONS TO THE HOMOGENEOUS BOLTZMANN-EQUATION [J].
ARKERYD, L ;
CAPRINO, S ;
IANIRO, N .
JOURNAL OF STATISTICAL PHYSICS, 1991, 63 (1-2) :345-361
[7]  
Beckner W, 2014, P AM MATH SOC, V142, P1217
[8]   EQUIVARIANT SCHRODINGER MAPS IN TWO SPATIAL DIMENSIONS [J].
Bejenaru, I. ;
Ionescu, A. ;
Kenig, C. ;
Tataru, D. .
DUKE MATHEMATICAL JOURNAL, 2013, 162 (11) :1967-2025
[9]   From the N-body schrodinger equation to the quantum boltzmann equation: A term-by-term convergence result in the weak coupling regime [J].
Benedetto, D. ;
Castella, F. ;
Esposito, R. ;
Pulvirenti, M. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 277 (01) :1-44
[10]   Some considerations on the derivation of the nonlinear quantum Boltzmann equation II: The low density regime [J].
Benedetto, D. ;
Castella, F. ;
Esposito, R. ;
Pulvirenti, M. .
JOURNAL OF STATISTICAL PHYSICS, 2006, 124 (2-4) :951-996