Caspase-3-mediated processing of poly(ADP-ribose) glycohydrolase during apoptosis

被引:107
作者
Affar, EB
Germain, M
Winstall, E
Vodenicharov, M
Shah, RG
Salvesen, GS
Poirier, GG
机构
[1] Univ Laval, CHU Laval, Med Res Ctr, Hlth & Environm Unit, Quebec City, PQ G1V 4G2, Canada
[2] Univ Laval, Fac Med, Quebec City, PQ G1V 4G2, Canada
[3] Burnham Inst, La Jolla, CA 92037 USA
关键词
D O I
10.1074/jbc.M007269200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Poly(ADP-ribose) glycohydrolase (PARG) is responsible for the catabolism of poly(ADP-ribose) synthesized by poly(ADP-ribose) polymerase (PARP-1) and other PARP-1-like enzymes. In this work, we report that PARG is cleaved during etoposide-, staurosporine-, and Fas-induced apoptosis in human cells. This cleavage is concomitant with PARP-1 processing and generates two C-terminal fragments of 85 and 74 kDa. In vitro cleavage assays using apoptotic cell extracts showed that a protease of the caspase family is responsible for PARG processing. A complete inhibition of this cleavage was achieved at nanomolar concentrations of the caspase inhibitor acetyl-Asp-Glu-Val-Asp-aldehyde, suggesting the involvement of caspase-3-like proteases. Consistently, recombinant caspase-3 efficiently cleaved PARG in vitro, suggesting the involvement of this protease in PARG processing in vivo, Furthermore, caspase-3-deficient MCF-7 cells did not show any PARG cleavage in response to staurosporine treatment. The cleavage sites identified by site-directed mutagenesis are DEID256 down arrow V and the unconventional site MDVD307 down arrow N. Kinetic studies have shown similar maximal velocity (V-max) and affinity (K-m) for both full-length PARG and its apoptotic fragments, suggesting that caspase-3 may affect PARG function without altering its enzymatic activity. The early cleavage of both PARP-1 and PARG by caspases during apoptosis suggests an important function for poly(ADP-ribose) metabolism regulation during this cell death process.
引用
收藏
页码:2935 / 2942
页数:8
相关论文
共 53 条
[1]   Immunodot blot method for the detection of poly(ADP-ribose) synthesized in vitro and in vivo [J].
Affar, EB ;
Duriez, PJ ;
Shah, RG ;
Sallmann, FR ;
Bourassa, S ;
Küpper, JH ;
Bürkle, A ;
Poirier, GG .
ANALYTICAL BIOCHEMISTRY, 1998, 259 (02) :280-283
[2]   CHARACTERIZATION OF POLYMERS OF ADENOSINE-DIPHOSPHATE RIBOSE GENERATED INVITRO AND INVIVO [J].
ALVAREZGONZALEZ, R ;
JACOBSON, MK .
BIOCHEMISTRY, 1987, 26 (11) :3218-3224
[3]   POLY(ADP-RIBOSE) CATABOLISM IN MAMMALIAN-CELLS EXPOSED TO DNA-DAMAGING AGENTS [J].
ALVAREZGONZALEZ, R ;
ALTHAUS, FR .
MUTATION RESEARCH, 1989, 218 (02) :67-74
[4]   PARP-2, a novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase [J].
Amé, JC ;
Rolli, V ;
Schreiber, V ;
Niedergang, C ;
Apiou, F ;
Decker, P ;
Muller, S ;
Hoger, T ;
Murcia, JMD ;
de Murcia, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (25) :17860-17868
[5]   pADPRT-2:: a novel mammalian polymerizing(ADP-ribosyl)transferase gene related to truncated pADPRT homologues in plants and Caenorhabditis elegans [J].
Berghammer, H ;
Ebner, M ;
Marksteiner, R ;
Auer, B .
FEBS LETTERS, 1999, 449 (2-3) :259-263
[6]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[7]   PURIFICATION OF POLY(ADP-RIBOSE) GLYCOHYDROLASE AND DETECTION OF ITS ISOFORMS BY A ZYMOGRAM FOLLOWING ONE-DIMENSIONAL OR 2-DIMENSIONAL ELECTROPHORESIS [J].
BROCHU, G ;
SHAH, GM ;
POIRIER, GG .
ANALYTICAL BIOCHEMISTRY, 1994, 218 (02) :265-272
[8]   Tankyrase is a Golgi-associated mitogen-activated protein kinase substrate that interacts with IRAP in GLUT4 vesicles [J].
Chi, NW ;
Lodish, HF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (49) :38437-38444
[9]   Proteases to die for [J].
Cryns, V ;
Yuan, JY .
GENES & DEVELOPMENT, 1998, 12 (11) :1551-1570
[10]   Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells [J].
deMurcia, JM ;
Niedergang, C ;
Trucco, C ;
Ricoul, M ;
Dutrillaux, B ;
Mark, M ;
Oliver, FJ ;
Masson, M ;
Dierich, A ;
LeMeur, M ;
Walztinger, C ;
Chambon, P ;
deMurcia, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (14) :7303-7307