Arithmetic of singular moduli and class polynomials

被引:32
作者
Ahlgren, S
Ono, K
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
关键词
singular moduli; class polynomials; modular forms;
D O I
10.1112/S0010437X04001198
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate divisibility properties of the traces and Hecke traces of singular moduli. In particular we prove that, if p is prime, these traces satisfy many congruences modulo powers of p which are described in terms of the factorization of p in imaginary quadratic fields. We also study generalizations of Lehner's classical congruences j(z)vertical bar U-p equivalent to 744 (mod p) (where p <= 11 and j(z) is the usual modular invariant), and we investigate connections between class polynomials and supersirigular polynomials in characteristic p.
引用
收藏
页码:293 / 312
页数:20
相关论文
共 26 条
[1]  
Berwick WEH, 1928, P LOND MATH SOC, V28, P53
[2]  
Borcherds RE, 1995, PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOLS 1 AND 2, P744
[3]   AUTOMORPHIC-FORMS ON O-S+2,O-2(R) AND INFINITE PRODUCTS [J].
BORCHERDS, RE .
INVENTIONES MATHEMATICAE, 1995, 120 (01) :161-213
[4]  
Carlitz L., 1959, J. Reine Angew. Math., V202, P174
[5]  
Deuring M., 1946, COMMENT MATH HELV, V19, P74, DOI DOI 10.1007/BF02565948
[6]  
DEURING M, 1958, ENZYKLOPADIE MATH 2, V1
[7]  
DORMAN DR, 1988, J REINE ANGEW MATH, V383, P207
[9]  
DWORK B, 1969, PUBL MATH-PARIS, V37, P27, DOI DOI 10.1007/BF02684886