A spectral multigrid method combined with MLFMM for solving electromagnetic wave scattering problems

被引:10
作者
Rui, Ping-Liang
Chen, Ru-Shan [1 ]
Wang, Dao-Xiang
Yung, Edward Kai-Ning
机构
[1] Nanjing Univ Sci & Technol, Dept Commun Engn, Nanjing 210094, Peoples R China
[2] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
algebraic muiltigrid method (AMG); electromagnetic wave scattering; multilevel fast multipole method (MLFMM); preconditioning techniques;
D O I
10.1109/TAP.2007.904131
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new spectral multigrid method (SMG) combined with the multilevel fast multipole method (MLFMM) is proposed for solving electromagnetic wave scattering problems. The MLFMM is used to speed up the matrix-vector product operations and the SMG is employed to accelerate the convergence rate of the Krylov iteration. Unlike traditional algebraic multigrid methods (AMG), the spectral multigrid method is an algebraic two-grid cycle built on a preconditioned Krylov iterative method that is used as the smoother, and the grid transfer operators are defined using the spectral information of the preconditioned matrix. Numerical experiments indicate that this class of multigrid method is very effective with the MLFMM and can reduce both the iteration number and the overall simulation time significantly.
引用
收藏
页码:2571 / 2577
页数:7
相关论文
共 17 条
[1]  
[Anonymous], 1997, ARPACK Users' Guide: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods, DOI 10.1137/1.9780898719628
[2]   Combining fast multipole techniques and an approximate inverse preconditioner for large electromagnetism calculations [J].
Carpentieri, B ;
Duff, IS ;
Giraud, L ;
Sylvand, G .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 27 (03) :774-792
[3]   A class of spectral two-level preconditioners [J].
Carpentieri, B ;
Duff, IS ;
Giraud, L .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 25 (02) :749-765
[4]  
Chew W.C., 2001, Fast and Efficient Algorithms in Computational Electromagnetics
[5]   Experimental study of ILU preconditioners for indefinite matrices [J].
Chow, E ;
Saad, Y .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 86 (02) :387-414
[6]  
COIFMAN R, 1993, IEEE T ANTENN PROPAG, V53, P7
[7]  
Hackbusch W., 1985, MULTIGRID METHODS AP, DOI 10.1007/978-3-662-02427-0
[8]   Sparse inverse preconditioning of multilevel fast multipole algorithm for hybrid integral equations in electromagnetics [J].
Lee, J ;
Zhang, J ;
Lu, CC .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2004, 52 (09) :2277-2287
[9]   Incomplete LU preconditioning for large scale dense complex linear systems from electromagnetic wave scattering problems [J].
Lee, J ;
Zhang, J ;
Lu, CC .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 185 (01) :158-175
[10]   GMRES with deflated restarting [J].
Morgan, RB .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 24 (01) :20-37