Surface trace doping of Na enhancing structure stability and adsorption properties of Li1.6Mn1.6O4 for Li+ recovery

被引:39
作者
Qian, Fangren [1 ,2 ,3 ]
Zhao, Bing [1 ,2 ,3 ]
Guo, Min [1 ,2 ]
Wu, Zhijian [1 ,2 ]
Zhou, Wuzong [4 ]
Liu, Zhong [1 ,2 ]
机构
[1] Chinese Acad Sci, Qinghai Inst Salt Lakes, Key Lab Comprehens & Highly Efficient Utilizat Sa, Xining 810008, Peoples R China
[2] Key Lab Salt Lake Resources Chem Qinghai Prov, Xining 810008, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Univ St Andrews, Sch Chem, St Andrews KY16 9ST, Fife, Scotland
关键词
Li1.6Mn1.6O4; Adsorption; Mn dissolution; DFT calculations; LITHIUM ION-SIEVE; MANGANESE OXIDES; HYDROTHERMAL SYNTHESIS; CAPTURING LITHIUM; SPINEL LIMN2O4; EXTRACTION; MECHANISM; INSERTION; CHITOSAN; LIMNO2;
D O I
10.1016/j.seppur.2020.117583
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Li1.6Mn1.6O4 (LMO) is a dominant adsorbent for lithium recovery from solutions resulted from its high theoretical adsorption uptake and a low loss rate of Mn, which can potentially be further improved by trace doping. We achieve stable cycling and high adsorption capacity of Li1.6Mn1.6O4 from aqueous lithium resources by Na doped (LMO-Na). The Mn dissolution is decreased from 5.4% (bare adsorbent) to 4.4%, and the uptake is increased from 33.5 mg/g to 33.9 mg/g (CLi+: 24 mmol/L). Furthermore, DFT calculations predict that Na replace for Li at 16d sites, result in an enhancement of the Li+ adsorption rate and structure stability of LMO. The loss rate of Mn in cycling process is restrained by Na doped, which may result from reducing the content of low valent Mn3+ and improving the structural stability of material. The effect of Na substitution on adsorption capacity and structure stability is discussed.
引用
收藏
页数:10
相关论文
共 46 条
[41]   Extraction of lithium with functionalized lithium ion-sieves [J].
Xu, Xin ;
Chen, Yongmei ;
Wan, Pingyu ;
Gasem, Khaled ;
Wang, Kaiying ;
He, Ting ;
Adidharma, Hertanto ;
Fan, Maohong .
PROGRESS IN MATERIALS SCIENCE, 2016, 84 :276-313
[42]   A Facile Synthesis of Hexagonal Spinel λ-MnO2 Ion-Sieves for Highly Selective Li+ Adsorption [J].
Yang, Fan ;
Chen, Sichong ;
Shi, Chentao ;
Xue, Feng ;
Zhang, Xiaoxian ;
Ju, Shengui ;
Xing, Weihong .
PROCESSES, 2018, 6 (05)
[43]   Synthesis of Li1.33Mn1.67O4 spinels with different morphologies and their ion adsorptivities after delithiation [J].
Yang, XJ ;
Kanoh, H ;
Tang, WP ;
Ooi, K .
JOURNAL OF MATERIALS CHEMISTRY, 2000, 10 (08) :1903-1909
[44]   Improvement of the high-rate discharge capability of phosphate-doped spinel LiMn2O4 by a hydrothermal method [J].
Ye, S. H. ;
Bo, J. K. ;
Li, C. Z. ;
Cao, J. S. ;
Sun, Q. L. ;
Wang, Y. L. .
ELECTROCHIMICA ACTA, 2010, 55 (08) :2972-2977
[45]   Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6V [J].
Zhang, Jie-Nan ;
Li, Qinghao ;
Ouyang, Chuying ;
Yu, Xiqian ;
Ge, Mingyuan ;
Huang, Xiaojing ;
Hu, Enyuan ;
Ma, Chao ;
Li, Shaofeng ;
Xiao, Ruijuan ;
Yang, Wanli ;
Chu, Yong ;
Liu, Yijin ;
Yu, Huigen ;
Yang, Xiao-Qing ;
Huang, Xuejie ;
Chen, Liquan ;
Li, Hong .
NATURE ENERGY, 2019, 4 (07) :594-603
[46]   LiMn2O4 spinel direct synthesis and lithium ion selective adsorption [J].
Zhang, Qin-Hui ;
Li, Shao-Peng ;
Sun, Shu-Ying ;
Yin, Xian-Sheng ;
Yu, Jian-Guo .
CHEMICAL ENGINEERING SCIENCE, 2010, 65 (01) :169-173