Liouvillian Skin Effect: Slowing Down of Relaxation Processes without Gap Closing

被引:122
作者
Haga, Taiki [1 ,2 ]
Nakagawa, Masaya [2 ]
Hamazaki, Ryusuke [2 ,3 ]
Ueda, Masahito [2 ,4 ,5 ]
机构
[1] Osaka Prefecture Univ, Dept Phys & Elect, Sakai, Osaka 5998531, Japan
[2] Univ Tokyo, Dept Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan
[3] Nonequilibrium Quantum Stat Mech RIKEN Hakubi R, RIKEN Cluster Pioneering Res CPR, RIKEN iTHEMS, Wako, Saitama 3510198, Japan
[4] RIKEN Ctr Emergent Matter Sci CEMS, Wako, Saitama 3510198, Japan
[5] Univ Tokyo, Inst Phys Intelligence, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan
基金
日本学术振兴会;
关键词
QUANTUM; COHERENCE; TIME;
D O I
10.1103/PhysRevLett.127.070402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is highly nontrivial to what extent we can deduce the relaxation behavior of a quantum dissipative system from the spectral gap of the Liouvillian that governs the time evolution of the density matrix. We investigate the relaxation processes of a quantum dissipative system that exhibits the Liouvillian skin effect, which means that the eigenmodes of the Liouvillian are localized exponentially close to the boundary of the system, and find that the timescale for the system to reach a steady state depends not only on the Liouvillian gap Delta, but also on the localization length xi of the eigenmodes. In particular, we show that the longest relaxation time tau that is maximized over initial states and local observables is given by tau similar to Delta(-1) (1+ L/xi) with L being the system size. This implies that the longest relaxation time can diverge for L -> infinity without gap closing.
引用
收藏
页数:7
相关论文
共 59 条
[1]   Realization of the Hofstadter Hamiltonian with Ultracold Atoms in Optical Lattices [J].
Aidelsburger, M. ;
Atala, M. ;
Lohse, M. ;
Barreiro, J. T. ;
Paredes, B. ;
Bloch, I. .
PHYSICAL REVIEW LETTERS, 2013, 111 (18)
[2]  
Balasubramanian G, 2009, NAT MATER, V8, P383, DOI [10.1038/nmat2420, 10.1038/NMAT2420]
[3]   Quantum coherence and entanglement with ultracold atoms in optical lattices [J].
Bloch, Immanuel .
NATURE, 2008, 453 (7198) :1016-1022
[4]   Dynamical and steady-state properties of a Bose-Hubbard chain with bond dissipation: A study based on matrix product operators [J].
Bonnes, Lars ;
Charrier, Daniel ;
Laeuchli, Andreas M. .
PHYSICAL REVIEW A, 2014, 90 (03)
[5]   Non-Hermitian Boundary Modes and Topology [J].
Borgnia, Dan S. ;
Kruchkov, Alex Jura ;
Slager, Robert-Jan .
PHYSICAL REVIEW LETTERS, 2020, 124 (05)
[6]   Algebraic versus Exponential Decoherence in Dissipative Many-Particle Systems [J].
Cai, Zi ;
Barthel, Thomas .
PHYSICAL REVIEW LETTERS, 2013, 111 (15)
[7]   Quantum Fluctuation Relations for the Lindblad Master Equation [J].
Chetrite, R. ;
Mallick, K. .
JOURNAL OF STATISTICAL PHYSICS, 2012, 148 (03) :480-501
[8]   Non-Markovian Quantum Dynamics: Local versus Nonlocal [J].
Chruscinski, Dariusz ;
Kossakowski, Andrzej .
PHYSICAL REVIEW LETTERS, 2010, 104 (07)
[9]   Quantum trajectories and open many-body quantum systems [J].
Daley, Andrew J. .
ADVANCES IN PHYSICS, 2014, 63 (02) :77-149
[10]   ATOMIC MOTION IN LASER-LIGHT - CONNECTION BETWEEN SEMICLASSICAL AND QUANTUM DESCRIPTIONS [J].
DALIBARD, J ;
COHENTANNOUDJI, C .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1985, 18 (08) :1661-1683