Precision genome editing using CRISPR-Cas9 and linear repair templates in C. elegans

被引:141
作者
Paix, Alexandre [1 ]
Folkmann, Andrew [1 ]
Seydoux, Geraldine [1 ]
机构
[1] Johns Hopkins Univ, Sch Med, Dept Mol Biol & Genet, 725 N Wolfe St, Baltimore, MD 21205 USA
基金
美国国家卫生研究院;
关键词
Genome editing; CRISPR; C; elegans; Cas9; RNP; Linear repair templates; Short homology; Gene conversion; Homology-dependent repair (HDR); CRISPR/CAS9; EFFICIENCY;
D O I
10.1016/j.ymeth.2017.03.023
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The ability to introduce targeted edits in the genome of model organisms is revolutionizing the field of genetics. State-of-the-art methods for precision genome editing use RNA-guided endonucleases to create double-strand breaks (DSBs) and DNA templates containing the edits to repair the DSBs. Following this strategy, we have developed a protocol to create precise edits in the C. elegans genome. The protocol takes advantage of two innovations to improve editing efficiency: direct injection of CRISPR-Cas9 ribonucleoprotein complexes and use of linear DNAs with short homology arms as repair templates. The protocol requires no cloning or selection, and can be used to generate base and gene-size edits in just 4 days. Point mutations, insertions, deletions and gene replacements can all be created using the same experimental pipeline. (C) 2017 The Authors. Published by Elsevier Inc.
引用
收藏
页码:86 / 93
页数:8
相关论文
共 23 条
[1]   Efficient Marker-Free Recovery of Custom Genetic Modifications with CRISPR/Cas9 in Caenorhabditis elegans [J].
Arribere, Joshua A. ;
Bell, Ryan T. ;
Fu, Becky X. H. ;
Artiles, Karen L. ;
Hartman, Phil S. ;
Fire, Andrew Z. .
GENETICS, 2014, 198 (03) :837-U842
[2]   CRISPR-Based Methods for Caenorhabditis elegans Genome Engineering [J].
Dickinson, Daniel J. ;
Goldstein, Bob .
GENETICS, 2016, 202 (03) :885-901
[3]   Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation [J].
Doench, John G. ;
Hartenian, Ella ;
Graham, Daniel B. ;
Tothova, Zuzana ;
Hegde, Mudra ;
Smith, Ian ;
Sullender, Meagan ;
Ebert, Benjamin L. ;
Xavier, Ramnik J. ;
Root, David E. .
NATURE BIOTECHNOLOGY, 2014, 32 (12) :1262-U130
[4]   The new frontier of genome engineering with CRISPR-Cas9 [J].
Doudna, Jennifer A. ;
Charpentier, Emmanuelle .
SCIENCE, 2014, 346 (6213) :1077-+
[5]   Dramatic Enhancement of Genome Editing by CRISPR/Cas9 Through Improved Guide RNA Design [J].
Farboud, Behnom ;
Meyer, Barbara J. .
GENETICS, 2015, 199 (04) :959-U106
[6]   Efficient Mutagenesis by Cas9 Protein-Mediated Oligonucleotide Insertion and Large-Scale Assessment of Single-Guide RNAs [J].
Gagnon, James A. ;
Valen, Eivind ;
Thyme, Summer B. ;
Huang, Peng ;
Ahkmetova, Laila ;
Pauli, Andrea ;
Montague, Tessa G. ;
Zimmerman, Steven ;
Richter, Constance ;
Schier, Alexander F. .
PLOS ONE, 2014, 9 (05)
[7]   Comparative assessment of fluorescent proteins for in vivo imaging in an animal model system [J].
Heppert, Jennifer K. ;
Dickinson, Daniel J. ;
Pani, Ariel M. ;
Higgins, Christopher D. ;
Steward, Annette ;
Ahringer, Julie ;
Kuhn, Jeffrey R. ;
Goldstein, Bob .
MOLECULAR BIOLOGY OF THE CELL, 2016, 27 (22) :3385-3394
[8]   DNA targeting specificity of RNA-guided Cas9 nucleases [J].
Hsu, Patrick D. ;
Scott, David A. ;
Weinstein, Joshua A. ;
Ran, F. Ann ;
Konermann, Silvana ;
Agarwala, Vineeta ;
Li, Yinqing ;
Fine, Eli J. ;
Wu, Xuebing ;
Shalem, Ophir ;
Cradick, Thomas J. ;
Marraffini, Luciano A. ;
Bao, Gang ;
Zhang, Feng .
NATURE BIOTECHNOLOGY, 2013, 31 (09) :827-+
[9]   The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair [J].
Jasin, Maria ;
Haber, James E. .
DNA REPAIR, 2016, 44 :6-16
[10]   CRISPR-Cas: New Tools for Genetic Manipulations from Bacterial Immunity Systems [J].
Jiang, Wenyan ;
Marraffini, Luciano A. .
ANNUAL REVIEW OF MICROBIOLOGY, VOL 69, 2015, 69 :209-228