共 50 条
Existence and decay of solutions in full space to Navier-Stokes equations with delays
被引:6
|作者:
Niche, Cesar J.
[1
]
Planas, Gabriela
[2
]
机构:
[1] Univ Fed Rio de Janeiro, Inst Matemat, Dept Matemat Aplicada, BR-21941909 Rio De Janeiro, Brazil
[2] Univ Estadual Campinas, Inst Matemat Estat Computacao Cientif, Dept Matemat, BR-13083859 Campinas, SP, Brazil
基金:
巴西圣保罗研究基金会;
关键词:
Navier-Stokes equations;
Delays;
Decay of solutions;
Fourier Splitting;
QUASI-GEOSTROPHIC EQUATIONS;
ASYMPTOTIC-BEHAVIOR;
EXPONENTIAL STABILITY;
WEAK SOLUTIONS;
ATTRACTORS;
MODEL;
OCEAN;
D O I:
10.1016/j.na.2010.08.038
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We consider the Navier-Stokes equations with delays in R-n, 2 <= n <= 4. We prove existence of weak solutions when the external forces contain some hereditary characteristics and uniqueness when n = 2. Moreover, if the external forces satisfy a time decay condition we show that the solution decays at an algebraic rate. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:244 / 256
页数:13
相关论文