Existence and decay of solutions in full space to Navier-Stokes equations with delays

被引:6
|
作者
Niche, Cesar J. [1 ]
Planas, Gabriela [2 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Matemat, Dept Matemat Aplicada, BR-21941909 Rio De Janeiro, Brazil
[2] Univ Estadual Campinas, Inst Matemat Estat Computacao Cientif, Dept Matemat, BR-13083859 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Navier-Stokes equations; Delays; Decay of solutions; Fourier Splitting; QUASI-GEOSTROPHIC EQUATIONS; ASYMPTOTIC-BEHAVIOR; EXPONENTIAL STABILITY; WEAK SOLUTIONS; ATTRACTORS; MODEL; OCEAN;
D O I
10.1016/j.na.2010.08.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Navier-Stokes equations with delays in R-n, 2 <= n <= 4. We prove existence of weak solutions when the external forces contain some hereditary characteristics and uniqueness when n = 2. Moreover, if the external forces satisfy a time decay condition we show that the solution decays at an algebraic rate. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:244 / 256
页数:13
相关论文
共 50 条
  • [21] Global existence of solutions for compressible Navier-Stokes equations with vacuum
    Qin, Xulong
    Yao, Zheng-an
    Zhou, Wenshu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 340 (01) : 226 - 238
  • [22] ON THE EXISTENCE OF HELICAL INVARIANT SOLUTIONS TO STEADY NAVIER-STOKES EQUATIONS
    Korobkov, M. I. K. H. A. I. L.
    Lyu, W. E. N. Q., I
    Weng, S. H. A. N. G. K. U. N.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (03) : 3974 - 3996
  • [23] Existence of stationary solutions of the Navier-Stokes equations in the presence of a wall
    Guo, Zhengguang
    Wittwer, Peter
    Zhou, Yong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (05): : 1493 - 1542
  • [24] Pointwise decay of solutions and of higher derivatives to Navier-Stokes equations
    Amrouche, C
    Girault, V
    Schoenbek, ME
    Schonbek, TP
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 31 (04) : 740 - 753
  • [25] On the weighted decay for solutions of the Navier-Stokes system
    Kukavica, Igor
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (06) : 2466 - 2470
  • [26] Existence and properties of the Navier-Stokes equations
    Zhirkin, A. V.
    COGENT MATHEMATICS, 2016, 3
  • [27] Besov Space Regularity Conditions for Weak Solutions of the Navier-Stokes Equations
    Farwig, Reinhard
    Sohr, Hermann
    Varnhorn, Werner
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2014, 16 (02) : 307 - 320
  • [28] Global existence of spherically symmetric solutions for nonlinear compressible Navier-Stokes equations
    Qin, Yuming
    Wen, Shenglan
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (02)
  • [29] PERIODIC SOLUTIONS AND THEIR STABILITY TO THE NAVIER-STOKES EQUATIONS ON A HALF SPACE
    Hieber, Matthias
    Nguyen, Thieu Huy
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, 17 (5-6): : 1899 - 1910
  • [30] Stability of stationary solutions to the Navier-Stokes equations in the Besov space
    Kozono, Hideo
    Shimizu, Senjo
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (05) : 1964 - 1982