Existence and decay of solutions in full space to Navier-Stokes equations with delays

被引:6
|
作者
Niche, Cesar J. [1 ]
Planas, Gabriela [2 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Matemat, Dept Matemat Aplicada, BR-21941909 Rio De Janeiro, Brazil
[2] Univ Estadual Campinas, Inst Matemat Estat Computacao Cientif, Dept Matemat, BR-13083859 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Navier-Stokes equations; Delays; Decay of solutions; Fourier Splitting; QUASI-GEOSTROPHIC EQUATIONS; ASYMPTOTIC-BEHAVIOR; EXPONENTIAL STABILITY; WEAK SOLUTIONS; ATTRACTORS; MODEL; OCEAN;
D O I
10.1016/j.na.2010.08.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Navier-Stokes equations with delays in R-n, 2 <= n <= 4. We prove existence of weak solutions when the external forces contain some hereditary characteristics and uniqueness when n = 2. Moreover, if the external forces satisfy a time decay condition we show that the solution decays at an algebraic rate. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:244 / 256
页数:13
相关论文
共 50 条
  • [1] Existence of solutions for a class of Navier-Stokes equations with infinite delay
    Guzzo, Sandro Marcos
    Planas, Gabriela
    APPLICABLE ANALYSIS, 2015, 94 (04) : 840 - 855
  • [2] On the Convergence of Solutions of Globally Modified Navier-Stokes Equations with Delays to Solutions of Navier-Stokes Equations with Delays
    Marin-Rubio, Pedro
    Real, Jose
    Marquez-Duran, Antonio M.
    ADVANCED NONLINEAR STUDIES, 2011, 11 (04) : 917 - 927
  • [3] On the decay of infinite energy solutions to the Navier-Stokes equations in the plane
    Bjorland, Clayton
    Niche, Cesar J.
    PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (07) : 670 - 674
  • [4] On decay of solutions to the Navier-Stokes equations
    Schonbek, ME
    APPLIED NONLINEAR ANALYSIS, 1999, : 505 - 512
  • [5] Existence and decay of solutions to the dissipative quasi-geostrophic equation with delays
    Niche, Cesar J.
    Planas, Gabriela
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (09) : 3936 - 3950
  • [6] Existence of solutions for the compressible Navier-Stokes equations
    Yin, HC
    CHINESE SCIENCE BULLETIN, 1996, 41 (10): : 805 - 812
  • [7] Decay of solutions for the 3D Navier-Stokes equations with clamping
    Liu, Hui
    Gao, Hongjun
    APPLIED MATHEMATICS LETTERS, 2017, 68 : 48 - 54
  • [8] Existence and uniqueness of weak solutions to stochastic 3D Navier-Stokes equations with delays
    Gao, Xiancheng
    Gao, Hongjun
    APPLIED MATHEMATICS LETTERS, 2019, 95 : 158 - 164
  • [9] Existence and uniqueness of solutions for Navier-Stokes equations with hyper-dissipation in a large space
    Nan, Zhijie
    Zheng, Xiaoxin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (06) : 3670 - 3703
  • [10] Navier-Stokes equations with delays
    Caraballo, T
    Real, J
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2014): : 2441 - 2453