A novel approach for exploring the molecular dynamics during condensation or evaporation at a liquid water surface is reported at pressures between 2 and 100 kPa. By introducing or removing a heating laser illuminating an optically tweezed aqueous aerosol droplet, the temperature of the droplet can be controlled with sub-mK accuracy and the change in size to reequilibrate with the surroundings monitored with subnanometer accuracy. The time constant for equilibration is shown to provide important insight into the coupling of heat and mass transfer during condensation or evaporation.