On the minimal representation of non-linear eddy-viscosity models

被引:11
作者
Fu, S. [1 ]
Wang, C. [2 ]
Guo, Y. [1 ]
机构
[1] Tsinghua Univ, Sch Aerosp, Beijing 100084, Peoples R China
[2] Univ Nottingham, Nottingham NG7 2RD, England
来源
JOURNAL OF TURBULENCE | 2011年 / 12卷 / 47期
基金
中国国家自然科学基金;
关键词
turbulence modelling; Reynolds stresses; nonlinear eddy-viscosity model; explicit algebraic stress model; REYNOLDS STRESS MODEL; TURBULENCE MODELS; EXPLICIT; FLOW;
D O I
10.1080/14685248.2011.633085
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This study attempts to provide a minimal explicit non-linear relationship between the Reynolds stresses and the mean strain rate and vorticity. Such relationship is also referred to as the nonlinear eddy-viscosity model (EVM) of the Reynolds stresses. Based on the observation of the independent terms in the Reynolds stress anisotropy tensor, it is proposed here that the explicit Reynolds stress closure can be formulated in a compact vorticity tensor to forma minimal representation. With the application of the generalized Cayley-Hamilton theory, it is shown that the explicit algebraic stress model with 10 integrity bases can be transformed into a five-term model expression. Thus, the present work provides a framework for the development of the explicit Reynolds stress closure in the compact form. Indeed, a cubic EVM is developed here that is capable of revealing the quadratic behaviour of the tangential velocity with respect to the radial distance in the fully developed turbulent rotating pipe flow. This model, hence, removed some major defects in the lower-order EVMs, while the model complexity is kept at minimum.
引用
收藏
页码:1 / 31
页数:31
相关论文
共 50 条
[31]   Development and application of a cubic eddy-viscosity model of turbulence [J].
Craft, TJ ;
Launder, BE ;
Suga, K .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 1996, 17 (02) :108-115
[32]   Performance of various RANS eddy-viscosity models for turbulent natural convection in tall vertical cavities [J].
El Moutaouakil, L. ;
Zrikem, Z. ;
Abdelbaki, A. .
HEAT AND MASS TRANSFER, 2014, 50 (08) :1103-1113
[33]   A new subgrid eddy-viscosity model for large-eddy simulation of anisotropic turbulence [J].
Cui, G. X. ;
Xu, C. X. ;
Fang, L. ;
Shao, L. ;
Zhang, Z. S. .
JOURNAL OF FLUID MECHANICS, 2007, 582 :377-397
[34]   NUMERICAL MODELLING OF THE WAKE OF A LOW-PRESSURE TURBINE BLADE USING A LINEAR AND A NON-LINEAR EDDY VISCOSITY MODEL [J].
Vlahostergios, Z. ;
Sideridis, A. ;
Yakinthos, K. ;
Goulas, A. .
9TH EUROPEAN CONFERENCE ON TURBOMACHINERY: FLUID DYNAMICS AND THERMODYNAMICS, VOLS I AND II, 2011, :1593-1602
[35]   A realizable and scale-consistent data-driven non-linear eddy viscosity modeling framework for arbitrary regression algorithms [J].
Mandler, Hannes ;
Weigand, Bernhard .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2022, 97
[36]   Blending the Eddy-Viscosity and Reynolds-Stress Models Using Uniform High-Order Discretization [J].
Wang, Shengye ;
Deng, Xiaogang ;
Wang, Guangxue ;
Yang, Xiaoliang .
AIAA JOURNAL, 2020, 58 (12) :5361-5378
[37]   Assessment of solving the RANS equations with two-equation eddy-viscosity models using high-order accurate discretization [J].
Elzaabalawy, H. ;
Deng, G. ;
Eca, L. ;
Visonneau, M. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 483
[38]   Consistently formulated eddy-viscosity coefficient for k-equation model [J].
Rahman, M. M. ;
Keskinen, K. ;
Vuorinen, V. ;
Larmi, M. ;
Siikonen, T. .
JOURNAL OF TURBULENCE, 2018, 19 (11-12) :959-994
[39]   A Four-Equation Eddy-Viscosity Approach for Modeling Bypass Transition [J].
Xu, Guoliang ;
Fu, Song .
ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2014, 6 (04) :523-538