Selective reflection of laser radiation from submicron layers of Rb and Cs atomic vapors: Applications in atomic spectroscopy

被引:5
作者
Klinger, E. [1 ,2 ]
Sargsyan, A. [1 ]
Leroy, C. [2 ]
Sarkisyan, D. [1 ]
机构
[1] Natl Acad Sci Armenia, Inst Phys Res, Ashtarak 0203, Armenia
[2] Univ Bourgogne Franche Comte, Lab Interdisciplinaire Carnot Bourgogne, CNRS, UMR 6303, Dijon, France
关键词
SATURATED-ABSORPTION SPECTROSCOPY; STRONG MAGNETIC-FIELDS; CELL; TRANSMISSION; TRANSITIONS; FEATURES;
D O I
10.1134/S1063776117090151
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We studied selective reflection (SR) of laser radiation from a window of a nanocell with thickness L similar to lambda (1,2)/2 filled with Rb and Cs atoms, where lambda (1) = 780 nm and lambda (2) = 852 nm are the wavelengths resonant with the D (2) laser lines for Rb and Cs, respectively. It is demonstrated that the negative derivative of the SR signal profile for L > lambda/2 changes to the positive one for L < lambda/2. It is shown that the real-time formation of the SR signal profile derivative (SRD) with the spectral width 30-40 MHz and located at the atomic transition is, in particular, a convenient frequency marker of D (2) transitions in Rb and Cs. The amplitudes of SRD signals are proportional to the atomic transition probabilities. A comparison with the known saturated absorption (SA) method demonstrated a number of advantages, such as the absence of cross-over resonances in the SRD spectrum, the simplicity of realization, a low required power, etc. An SRD frequency marker also operates in the presence of the Ne buffer gas at a pressure of 6 Torr, which allowed us to determine the Ne-Rb collisional broadening, whereas the SA method is already inapplicable at buffer gas pressures above 0.1 Torr. The realization simplicity makes the SRD method a convenient tool for atomic spectroscopy. Our theoretical model well describes the SRD signal.
引用
收藏
页码:543 / 550
页数:8
相关论文
共 22 条
[1]   Saturated-absorption spectroscopy: eliminating crossover resonances by use of copropagating beams [J].
Banerjee, A ;
Natarajan, V .
OPTICS LETTERS, 2003, 28 (20) :1912-1914
[2]   Atom-wall interaction [J].
Bloch, D ;
Ducloy, M .
ADVANCES IN ATOMIC, MOLECULAR, AND OPTICAL PHYSICS, VOL 50, 2005, 50 :91-154
[3]  
Budker D., 2004, ATOMIC PHYS
[4]  
Demtroder W., 2004, SPRINGER SERIES CHEM, V5
[5]   Collapse and revival of a Dicke-type coherent narrowing in a sub-micron thick vapor cell transmission spectroscopy [J].
Dutier, G ;
Yarovitski, A ;
Saltiel, S ;
Papoyan, A ;
Sarkisyan, D ;
Bloch, D ;
Ducloy, M .
EUROPHYSICS LETTERS, 2003, 63 (01) :35-41
[6]   Revisiting optical spectroscopy in a thin vapor cell: mixing of reflection and transmission as a Fabry-Perot microcavity effect [J].
Dutier, G ;
Saltiel, S ;
Bloch, D ;
Ducloy, M .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2003, 20 (05) :793-800
[7]   Exploring the van der Waals atom-surface attraction in the nanometric range [J].
Fichet, M. ;
Dutier, G. ;
Yarovitsky, A. ;
Todorov, P. ;
Hamdi, I. ;
Maurin, I. ;
Saltiel, S. ;
Sarkisyan, D. ;
Gorza, M.-P. ;
Bloch, D. ;
Ducloy, M. .
EPL, 2007, 77 (05)
[8]   Essential features of optical processes in neon-buffered submicron-thin Rb vapor cell [J].
Hakhumyan, Grant ;
Sargsyan, Armen ;
Leroy, Claude ;
Pashayan-Leroy, Yevgenya ;
Papoyan, Aram ;
Sarkisyan, David .
OPTICS EXPRESS, 2010, 18 (14) :14577-14585
[9]   OPTICAL-PUMPING [J].
HAPPER, W .
REVIEWS OF MODERN PHYSICS, 1972, 44 (02) :169-&
[10]   Cooperative Lamb Shift in an Atomic Vapor Layer of Nanometer Thickness [J].
Keaveney, J. ;
Sargsyan, A. ;
Krohn, U. ;
Hughes, I. G. ;
Sarkisyan, D. ;
Adams, C. S. .
PHYSICAL REVIEW LETTERS, 2012, 108 (17)