Q-CHARACTERS OF THE TENSOR PRODUCTS IN sl2-CASE

被引:32
作者
Feigin, B. [1 ,2 ]
Feigin, E. [2 ]
机构
[1] LD Landau Theoret Phys Inst, Chernogolovka 142432, Russia
[2] Independent Univ Moscow, Moscow, Russia
关键词
Universal enveloping algebra; representation theory; current algebra; Gordon's formula;
D O I
10.17323/1609-4514-2002-2-3-567-588
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let pi(1), . . ., pi(n) be irreducible finite-dimensional sl(2)-modules. Using the theory of representations of current algebras, we introduce several ways to construct a q-grading on pi(1) circle times . . . circle times pi(n). We study the corresponding graded modules and prove that they are essentially the same.
引用
收藏
页码:567 / 588
页数:22
相关论文
共 7 条
[1]  
Chari V., 2001, Represent. Theory, V5, P191, DOI 10.1090/S1088-4165-01-00115-7
[2]  
Feigin B., 1999, AM MATH SOC TRANSL 2, V194, P61
[3]  
Feigin B., 1999, STAT PHYS EVE 21 CEN, P366
[4]   On the finitization of the Gordon identities [J].
Feigin, BL ;
Loktev, SA .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2001, 35 (01) :44-51
[5]   Supernomial coefficients, polynomial identities and q-series [J].
Schilling, A ;
Warnaar, SO .
RAMANUJAN JOURNAL, 1998, 2 (04) :459-494
[6]   FUNCTIONAL MODELS FOR REPRESENTATIONS OF CURRENT-ALGEBRAS AND SEMIINFINITE SCHUBERT CELLS [J].
STOYANOVSKY, AV ;
FEIGIN, BL .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1994, 28 (01) :55-72
[7]   The Andrews-Gordon identities and q-multinomial coefficients [J].
Warnaar, SO .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 184 (01) :203-232