Best bang for your buck: GPU nodes for GROMACS biomolecular simulations

被引:200
作者
Kutzner, Carsten [1 ]
Pall, Szilard [2 ]
Fechner, Martin [1 ]
Esztermann, Ansgar [1 ]
de Groot, Bert L. [1 ]
Grubmueller, Helmut [1 ]
机构
[1] Max Planck Inst Biophys Chem, Theoret & Computat Biophys Dept, D-37077 Gottingen, Germany
[2] KTH Royal Inst Technol, Theoret & Computat Biophys, S-17121 Stockholm, Sweden
关键词
molecular dynamics; GPU; parallel computing; energy efficiency; benchmark; MD; hybrid parallelization; PARTICLE-MESH EWALD; MOLECULAR-DYNAMICS;
D O I
10.1002/jcc.24030
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The molecular dynamics simulation package GROMACS runs efficiently on a wide variety of hardware from commodity workstations to high performance computing clusters. Hardware features are well-exploited with a combination of single instruction multiple data, multithreading, and message passing interface (MPI)-based single program multiple data/multiple program multiple data parallelism while graphics processing units (GPUs) can be used as accelerators to compute interactions off-loaded from the CPU. Here, we evaluate which hardware produces trajectories with GROMACS 4.6 or 5.0 in the most economical way. We have assembled and benchmarked compute nodes with various CPU/GPU combinations to identify optimal compositions in terms of raw trajectory production rate, performance-to-price ratio, energy efficiency, and several other criteria. Although hardware prices are naturally subject to trends and fluctuations, general tendencies are clearly visible. Adding any type of GPU significantly boosts a node's simulation performance. For inexpensive consumer-class GPUs this improvement equally reflects in the performance-to-price ratio. Although memory issues in consumer-class GPUs could pass unnoticed as these cards do not support error checking and correction memory, unreliable GPUs can be sorted out with memory checking tools. Apart from the obvious determinants for cost-efficiency like hardware expenses and raw performance, the energy consumption of a node is a major cost factor. Over the typical hardware lifetime until replacement of a few years, the costs for electrical power and cooling can become larger than the costs of the hardware itself. Taking that into account, nodes with a well-balanced ratio of CPU and consumer-class GPU resources produce the maximum amount of GROMACS trajectory over their lifetime. (c) 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.
引用
收藏
页码:1990 / 2008
页数:19
相关论文
共 22 条
[1]  
Abraham M. J., 2018, GROMACS USER MANUAL
[2]   Optimization of Parameters for Molecular Dynamics Simulation Using Smooth Particle-Mesh Ewald in GROMACS 4.5 [J].
Abraham, Mark J. ;
Gready, Jill E. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2011, 32 (09) :2031-2040
[3]  
[Anonymous], 2015, SOFTWAREX
[4]   Energy barriers and driving forces in tRNA translocation through the ribosome [J].
Bock, Lars V. ;
Blau, Christian ;
Schroeder, Gunnar F. ;
Davydov, Iakov I. ;
Fischer, Niels ;
Stark, Holger ;
Rodnina, Marina V. ;
Vaiana, Andrea C. ;
Grubmueller, Helmut .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2013, 20 (12) :1390-1396
[5]  
Bowers K.J., 2006, P ACM IEEE SC 2006 C
[6]   CHARMM: The Biomolecular Simulation Program [J].
Brooks, B. R. ;
Brooks, C. L., III ;
Mackerell, A. D., Jr. ;
Nilsson, L. ;
Petrella, R. J. ;
Roux, B. ;
Won, Y. ;
Archontis, G. ;
Bartels, C. ;
Boresch, S. ;
Caflisch, A. ;
Caves, L. ;
Cui, Q. ;
Dinner, A. R. ;
Feig, M. ;
Fischer, S. ;
Gao, J. ;
Hodoscek, M. ;
Im, W. ;
Kuczera, K. ;
Lazaridis, T. ;
Ma, J. ;
Ovchinnikov, V. ;
Paci, E. ;
Pastor, R. W. ;
Post, C. B. ;
Pu, J. Z. ;
Schaefer, M. ;
Tidor, B. ;
Venable, R. M. ;
Woodcock, H. L. ;
Wu, X. ;
Yang, W. ;
York, D. M. ;
Karplus, M. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (10) :1545-1614
[7]   Implementing molecular dynamics on hybrid high performance computers - Particle-particle particle-mesh [J].
Brown, W. Michael ;
Kohlmeyer, Axel ;
Plimpton, Steven J. ;
Tharrington, Arnold N. .
COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (03) :449-459
[8]   A SMOOTH PARTICLE MESH EWALD METHOD [J].
ESSMANN, U ;
PERERA, L ;
BERKOWITZ, ML ;
DARDEN, T ;
LEE, H ;
PEDERSEN, LG .
JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (19) :8577-8593
[9]   Systematic Benchmarking of Large Molecular Dynamics Simulations Employing GROMACS on Massive Multiprocessing Facilities [J].
Gruber, Christian C. ;
Pleiss, Juergen .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2011, 32 (04) :600-606
[10]  
Haque I. S., 2010, 10 IEEE ACM INT C CL