Universal Extensions of Restricted Classes of Quantum Operations

被引:21
|
作者
Oszmaniec, Michal [1 ,2 ]
Zimboras, Zoltan [3 ,4 ]
机构
[1] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Barcelona 08860, Spain
[2] Univ Gdansk, Fac Math Phys & Informat, Natl Quantum Informat Ctr, Inst Theoret Phys & Astrophys, Wita Stwosza 57, PL-80308 Gdansk, Poland
[3] Hungarian Acad Sci, Wigner Res Ctr Phys, POB 49, H-1525 Budapest, Hungary
[4] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany
基金
欧洲研究理事会;
关键词
FERMIONIC LINEAR OPTICS; COMPUTATION; CONTROLLABILITY; SYSTEMS; GATES;
D O I
10.1103/PhysRevLett.119.220502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For numerous applications of quantum theory it is desirable to be able to apply arbitrary unitary operations on a given quantum system. However, in particular situations only a subset of unitary operations is easily accessible. This raises the question of what additional unitary gates should be added to a given gate set in order to attain physical universality, i.e., to be able to perform arbitrary unitary transformation on the relevant Hilbert space. In this work, we study this problem for three paradigmatic cases of naturally occurring restricted gate sets: (A) particle-number preserving bosonic linear optics, (B) particle-number preserving fermionic linear optics, and (C) general (not necessarily particle-number preserving) fermionic linear optics. Using tools from group theory and control theory, we classify, in each of these scenarios, what sets of gates are generated, if an additional gate is added to the set of allowed transformations. This allows us to solve the universality problem completely for arbitrary number of particles and for arbitrary dimensions of the single-particle Hilbert space.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Universal quantum gates on microwave photons assisted by circuit quantum electrodynamics
    Hua, Ming
    Tao, Ming-Jie
    Deng, Fu-Guo
    PHYSICAL REVIEW A, 2014, 90 (01):
  • [32] Universal quantum gates for path photonic qubit
    Souza, R. C.
    Balthazar, W. F.
    Huguenin, J. A. O.
    QUANTUM INFORMATION PROCESSING, 2022, 21 (02)
  • [33] Universal Digital Quantum Simulation with Trapped Ions
    Lanyon, B. P.
    Hempel, C.
    Nigg, D.
    Mueller, M.
    Gerritsma, R.
    Zaehringer, F.
    Schindler, P.
    Barreiro, J. T.
    Rambach, M.
    Kirchmair, G.
    Hennrich, M.
    Zoller, P.
    Blatt, R.
    Roos, C. F.
    SCIENCE, 2011, 334 (6052) : 57 - 61
  • [34] Partitioned quantum cellular automata are intrinsically universal
    Arrighi, Pablo
    Grattage, Jonathan
    NATURAL COMPUTING, 2012, 11 (01) : 13 - 22
  • [35] Universal families and quantum control in infinite dimensions
    Mendes, R. Vilela
    PHYSICS LETTERS A, 2009, 373 (30) : 2529 - 2532
  • [36] Universal simulation of Markovian open quantum systems
    Sweke, Ryan
    Sinayskiy, Ilya
    Bernard, Denis
    Petruccione, Francesco
    PHYSICAL REVIEW A, 2015, 91 (06)
  • [37] Superadiabatic Controlled Evolutions and Universal Quantum Computation
    Santos, Alan C.
    Sarandy, Marcelo S.
    SCIENTIFIC REPORTS, 2015, 5
  • [38] Distillation of nonstabilizer states for universal quantum computation
    Duclos-Cianci, Guillaume
    Svore, Krysta M.
    PHYSICAL REVIEW A, 2013, 88 (04):
  • [39] Adding control to arbitrary unknown quantum operations
    Zhou, Xiao-Qi
    Ralph, Timothy C.
    Kalasuwan, Pruet
    Zhang, Mian
    Peruzzo, Alberto
    Lanyon, Benjamin P.
    O'Brien, Jeremy L.
    NATURE COMMUNICATIONS, 2011, 2
  • [40] Neural implementation of operations used in quantum cognition
    Busemeyer, Jerome R.
    Fakhari, Pegah
    Kvam, Peter
    PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2017, 130 : 53 - 60