Universal Extensions of Restricted Classes of Quantum Operations

被引:21
|
作者
Oszmaniec, Michal [1 ,2 ]
Zimboras, Zoltan [3 ,4 ]
机构
[1] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Barcelona 08860, Spain
[2] Univ Gdansk, Fac Math Phys & Informat, Natl Quantum Informat Ctr, Inst Theoret Phys & Astrophys, Wita Stwosza 57, PL-80308 Gdansk, Poland
[3] Hungarian Acad Sci, Wigner Res Ctr Phys, POB 49, H-1525 Budapest, Hungary
[4] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany
基金
欧洲研究理事会;
关键词
FERMIONIC LINEAR OPTICS; COMPUTATION; CONTROLLABILITY; SYSTEMS; GATES;
D O I
10.1103/PhysRevLett.119.220502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For numerous applications of quantum theory it is desirable to be able to apply arbitrary unitary operations on a given quantum system. However, in particular situations only a subset of unitary operations is easily accessible. This raises the question of what additional unitary gates should be added to a given gate set in order to attain physical universality, i.e., to be able to perform arbitrary unitary transformation on the relevant Hilbert space. In this work, we study this problem for three paradigmatic cases of naturally occurring restricted gate sets: (A) particle-number preserving bosonic linear optics, (B) particle-number preserving fermionic linear optics, and (C) general (not necessarily particle-number preserving) fermionic linear optics. Using tools from group theory and control theory, we classify, in each of these scenarios, what sets of gates are generated, if an additional gate is added to the set of allowed transformations. This allows us to solve the universality problem completely for arbitrary number of particles and for arbitrary dimensions of the single-particle Hilbert space.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Quantum Zeno Dynamics from General Quantum Operations
    Burgarth, Daniel
    Facchi, Paolo
    Nakazato, Hiromichi
    Pascazio, Saverio
    Yuasa, Kazuya
    QUANTUM, 2020, 4
  • [22] Universal set of gates for microwave dressed-state quantum computing
    Mikelsons, Gatis
    Cohen, Itsik
    Retzker, Alex
    Plenio, Martin B.
    NEW JOURNAL OF PHYSICS, 2015, 17
  • [23] Thresholds for Universal Concatenated Quantum Codes
    Chamberland, Christopher
    Jochym-O'Connor, Tomas
    Laflamme, Raymond
    PHYSICAL REVIEW LETTERS, 2016, 117 (01)
  • [24] Universal locality of quantum thermal susceptibility
    De Palma, Giacomo
    De Pasquale, Antonella
    Giovannetti, Vittorio
    PHYSICAL REVIEW A, 2017, 95 (05)
  • [25] Minimal universal quantum heat machine
    Gelbwaser-Klimovsky, D.
    Alicki, R.
    Kurizki, G.
    PHYSICAL REVIEW E, 2013, 87 (01):
  • [26] The Magic of Universal Quantum Computing with Permutations
    Planat, Michel
    Haq, Rukhsan Ul
    ADVANCES IN MATHEMATICAL PHYSICS, 2017, 2017
  • [27] Universal Chaotic Scattering on Quantum Graphs
    Pluhar, Z.
    Weidenmueller, H. A.
    PHYSICAL REVIEW LETTERS, 2013, 110 (03)
  • [28] Applications of universal parity quantum computation
    Fellner, Michael
    Messinger, Anette
    Ender, Kilian
    Lechner, Wolfgang
    PHYSICAL REVIEW A, 2022, 106 (04)
  • [29] Universal behavior in quantum chaotic dynamics
    Xiong, H. W.
    Wu, B.
    LASER PHYSICS LETTERS, 2011, 8 (05) : 398 - 404
  • [30] Entropy, stochastic matrices, and quantum operations
    Zhang, Lin
    LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (03): : 396 - 405