Device-to-Device (D2D) Multi-Criteria Learning Algorithm Using Secured Sensors

被引:18
作者
Haseeb, Khalid [1 ]
Rehman, Amjad [2 ]
Saba, Tanzila [2 ]
Bahaj, Saeed Ali [3 ]
Lloret, Jaime [4 ,5 ]
机构
[1] Islamia Coll Peshawar, Dept Comp Sci, Peshawar 25000, Pakistan
[2] CCIS Prince Sultan Univ, Artificial Intelligence & Data Analyt AIDA Lab, Riyadh 11586, Saudi Arabia
[3] Prince Sattam Bin Abdulaziz Univ, MIS Dept Coll Business Adm, Alkharj 16278, Saudi Arabia
[4] Univ Politen Valencia, Inst Invest Gest Integrada Zonas Costeras, Valencia 46379, Spain
[5] Staffordshire Univ, Sch Comp & Digital Technol, Stoke ST4 2DE, England
关键词
wireless systems; mobile sensors; D2D; technological development; Internet of things; INTERNET; IOT;
D O I
10.3390/s22062115
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Wireless networks and the Internet of things (IoT) have proven rapid growth in the development and management of smart environments. These technologies are applied in numerous research fields, such as security surveillance, Internet of vehicles, medical systems, etc. The sensor technologies and IoT devices are cooperative and allow the collection of unpredictable factors from the observing field. However, the constraint resources of distributed battery-powered sensors decrease the energy efficiency of the IoT network and increase the delay in receiving the network data on users' devices. It is observed that many solutions are proposed to overcome the energy deficiency in smart applications; though, due to the mobility of the nodes, lots of communication incurs frequent data discontinuity, compromising the data trust. Therefore, this work introduces a D2D multi-criteria learning algorithm for IoT networks using secured sensors, which aims to improve the data exchange without imposing additional costs and data diverting for mobile sensors. Moreover, it reduces the compromising threats in the presence of anonymous devices and increases the trustworthiness of the IoT-enabled communication system with the support of machine learning. The proposed work was tested and analyzed using broad simulation-based experiments and demonstrated the significantly improved performance of the packet delivery ratio by 17%, packet disturbances by 31%, data delay by 22%, energy consumption by 24%, and computational complexity by 37% for realistic network configurations.
引用
收藏
页数:18
相关论文
共 33 条
[31]   Energy Efficient Routing Algorithm with Mobile Sink Support for Wireless Sensor Networks [J].
Wang, Jin ;
Gao, Yu ;
Liu, Wei ;
Sangaiah, Arun Kumar ;
Kim, Hye-Jin .
SENSORS, 2019, 19 (07)
[32]   An Asynchronous Clustering and Mobile Data Gathering Schema Based on Timer Mechanism in Wireless Sensor Networks [J].
Wang, Jin ;
Gao, Yu ;
Liu, Wei ;
Wu, Wenbing ;
Lim, Se-Jung .
CMC-COMPUTERS MATERIALS & CONTINUA, 2019, 58 (03) :711-725
[33]   Security challenges to smart agriculture: Current state, key issues, and future directions [J].
Zanella, Angelita Rettore de Araujo ;
da Silva, Eduardo ;
Albini, Luiz Carlos Pessoa .
ARRAY, 2020, 8