Blow-up, Concentration Phenomenon and Global Existence for the Keller-Segel Model in High Dimension

被引:56
作者
Calvez, Vincent [1 ]
Corrias, Lucilla [2 ]
Ebde, Mohamed Abderrahman [3 ]
机构
[1] Ecole Normale Super Lyon, CNRS, Unite Math Pures & Appl, UMR 5669, F-69364 Lyon 07, France
[2] Univ Evry Val Essonne, Dept Math, Evry, France
[3] Univ Paris 13, CNRS, Inst Galilee, Lab Anal Geometrie & Applicat,UMR 7539, F-93430 Villetaneuse, France
关键词
Blow-up; Chemotaxis; Energy methods; Global weak solutions; Local weak solutions; Parabolic systems; TIME AGGREGATION; CHEMOTAXIS MODEL; DIFFUSION; SYSTEM; SOBOLEV; MASS;
D O I
10.1080/03605302.2012.655824
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is devoted to the analysis of the classical Keller-Segel system over R-d, d >= 3. We describe as much as possible the dynamics of the system characterized by various criteria, both in the parabolic-elliptic case and in the fully parabolic case. The main results in the parabolic-elliptic case are: local existence without smallness assumption on the initial density and a quantified blow-up rate, global existence under an improved smallness condition and comparison of blow-up criteria. A new concentration phenomenon for the fully parabolic case is also given.
引用
收藏
页码:561 / 584
页数:24
相关论文
共 51 条
[1]  
[Anonymous], 2007, Adv. Math. Sci. Appl.
[2]  
[Anonymous], 1996, The Cauchy Problems in Kinetic Theory
[3]  
AUBIN JP, 1963, CR HEBD ACAD SCI, V256, P5042
[4]   SHARP SOBOLEV INEQUALITIES ON THE SPHERE AND THE MOSER-TRUDINGER INEQUALITY [J].
BECKNER, W .
ANNALS OF MATHEMATICS, 1993, 138 (01) :213-242
[5]  
BILER P, 1995, STUD MATH, V114, P181
[6]   Global and exploding solutions for nonlocal quadratic evolution problems [J].
Biler, P ;
Woyczynski, WA .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1998, 59 (03) :845-869
[7]  
Biler P., 1994, Colloq. Math, V66, P319, DOI DOI 10.4064/CM-66-2-319-334
[8]  
Biler P., 1995, Colloq. Math, V68, P229, DOI DOI 10.4064/CM-68-2-229-239
[9]  
Biler P., 1998, Adv. Math. Sci. Appl., V8, P715
[10]   The 8π-problem for radially symmetric solutions of a chemotaxis model in the plane [J].
Biler, Piotr ;
Karch, Grzegorz ;
Laurencot, Philippe ;
Nadzieja, Tadeusz .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2006, 29 (13) :1563-1583