An integral spectral representation of the propagator for the wave equation in the Kerr geometry

被引:21
作者
Finster, F [1 ]
Kamran, N
Smoller, J
Yau, ST
机构
[1] Univ Regensburg, NWFI, D-93040 Regensburg, Germany
[2] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
[3] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[4] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
D O I
10.1007/s00220-005-1390-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the scalar wave equation in the Kerr geometry for Cauchy data which is smooth and compactly supported outside the event horizon. We derive an integral representation which expresses the solution as a superposition of solutions of the radial and angular ODEs which arise in the separation of variables. In particular, we prove completeness of the solutions of the separated ODEs. This integral representation is a suitable starting point for a detailed analysis of the long-time dynamics of scalar waves in the Kerr geometry.
引用
收藏
页码:257 / 298
页数:42
相关论文
共 20 条
[1]  
ANCO S, COMMUNICATION
[2]   On the stability of the Kerr metric [J].
Beyer, HR .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 221 (03) :659-676
[3]  
Bognar J, 1974, INDEFINITE INNER PRO, V78
[4]  
CARTER B, 1972, BLACK HOLE EQUILIBRI
[5]  
Chernoff P.R., 1973, J FUNCT ANAL, V12, P401, DOI 10.1016/0022-1236(73)90003-7
[6]  
Coddington N., 1955, THEORY ORDINARY DIFF
[7]  
Evans L.C., 1998, PARTIAL DIFFERENTIAL, V19
[8]  
FINSTER F, 2004, SPECTRAL ESTIMATES N
[9]  
FINSTER F, DECAY SOLUTIONS WAVE
[10]  
Finster F, 2003, ADV THEOR MATH PHYS, V7, P25