Group k-Sparse Temporal Convolutional Neural Networks: Unsupervised Pretraining for Video Classification

被引:1
作者
Milacski, Zoltan A. [1 ]
Poczos, Barnabas [2 ]
Lorincz, Andras [1 ]
机构
[1] Eotvos Lorand Univ, Fac Informat, Budapest, Hungary
[2] Carnegie Mellon Univ, Machine Learning Dept, Pittsburgh, PA 15213 USA
来源
2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2019年
关键词
group sparsity; temporal; convolutional neural networks; unsupervised learning; video data;
D O I
10.1109/ijcnn.2019.8852057
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we propose Group k-Sparse Temporal Convolutional Neural Networks for unsupervised pretraining using video data. Our work is the first to consider the recurrent extension of structured sparsity, thus enhancing representational power and explainability. We show that our architecture is able to outperform several state-of-the-art baselines on Rotated MNIST, Scanned CIFAR-10, COIL-100 and NEC Animal pretraining benchmarks for video classification using limited labeled data.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Epithelium-Stroma Classification via Convolutional Neural Networks and Unsupervised Domain Adaptation in Histopathological Images
    Huang, Yue
    Zheng, Han
    Liu, Chi
    Ding, Xinghao
    Rohde, Gustavo K.
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2017, 21 (06) : 1625 - 1632
  • [22] Investigation of the Efficiency of Unsupervised Learning for Multi-task Classification in Convolutional Neural Network
    Kim, Jonghong
    Jang, Gil-Jin
    Lee, Minho
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2016, PT III, 2016, 9949 : 547 - 554
  • [23] Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural Networks
    Dosovitskiy, Alexey
    Fischer, Philipp
    Springenberg, Jost Tobias
    Riedmiller, Martin
    Brox, Thomas
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (09) : 1734 - 1747
  • [24] Unsupervised Network Intrusion Detection Using Convolutional Neural Networks
    Alam, Shumon
    Alam, Yasin
    Cui, Suxia
    Akujuobi, Cajetan M.
    [J]. 2023 IEEE 13TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE, CCWC, 2023, : 712 - 717
  • [25] Age group classification to identify the progress of language development based on convolutional neural networks
    Oh, Byoung-Doo
    Lee, Yoon-Kyoung
    Song, Hye-Jeong
    Kim, Jong-Dae
    Park, Chan-Young
    Kim, Yu-Seop
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (04) : 7745 - 7754
  • [26] Ship classification based on convolutional neural networks
    Li Zhenzhen
    Zhao Baojun
    Tang Linbo
    Li Zhen
    Feng Fan
    [J]. JOURNAL OF ENGINEERING-JOE, 2019, 2019 (21): : 7343 - 7346
  • [27] Classification of Radar Signals with Convolutional Neural Networks
    Hong, Seok-Jun
    Yi, Yearn-Gui
    Jo, Jeil
    Seo, Bo-Seok
    [J]. 2018 TENTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS (ICUFN 2018), 2018, : 894 - 896
  • [28] Plant Classification using Convolutional Neural Networks
    Yalcin, Hulya
    Razavi, Salar
    [J]. 2016 FIFTH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS), 2016, : 233 - 237
  • [29] Sound Classification Using Convolutional Neural Networks
    Jaiswal, Kaustumbh
    Patel, Dhairya Kalpeshbhai
    [J]. 2018 SEVENTH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING IN EMERGING MARKETS (CCEM), 2018, : 81 - 84
  • [30] Convolutional Neural Networks for Web Documents Classification
    Artene, Codrut-Georgian
    Tibeica, Marius Nicolae
    Vecliuc, Dumitru Daniel
    Leon, Florin
    [J]. INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2021, 2021, 12672 : 289 - 302