ISING FIELD PARAMETER ESTIMATION FROM INCOMPLETE AND NOISY DATA

被引:0
|
作者
Giovannelli, J. -F. [1 ]
机构
[1] Univ Bordeaux, CNRS, Lab Integrat Mat Syst, Grp Signal Image, F-33405 Talence, France
来源
2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2011年
关键词
Ising field; parameter estimation; incomplete data; hidden variable; Bayesian; partition function;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The present paper deals with the estimation problem of the Ising field parameter and extends a previous one [1]. It proposes an estimate from indirect observation (incomplete and noisy), whereas the previous paper proposed an estimate from direct observation (complete and noiseless). Both of them are based on an explicit expression for the partition function, known for a long time [2] but, to the best of our knowledge, never used for parameter estimation (except in our previous paper [1]). Both of them are developed in a Bayesian framework. In our previous study (direct observation), the posterior law is explicit but in the present case (indirect observation) the posterior law is not explicit due to the hidden structure. The proposed approach relies on a full Bayesian strategy and a stochastic sampling algorithm (Gibbs sampler including a Metropolis-Hastings step) for posterior exploration. The paper proposes a numerical evaluation of the proposed method.
引用
收藏
页码:1853 / 1856
页数:4
相关论文
共 50 条
  • [21] IMAGE-RECONSTRUCTION FROM INCOMPLETE AND NOISY DATA
    GULL, SF
    DANIELL, GJ
    NATURE, 1978, 272 (5655) : 686 - 690
  • [22] The accuracy of parameter estimation from noisy data, with application to resonance peak estimation in distributed Brillouin sensing
    Pannell, CN
    Dhliwayo, J
    Webb, DJ
    MEASUREMENT SCIENCE AND TECHNOLOGY, 1998, 9 (01) : 50 - 57
  • [23] Inferences from noisy and incomplete biological network data
    Stumpf, Michael P. H.
    RECENT PROGRESS IN COMPUTATIONAL SCIENCES AND ENGINEERING, VOLS 7A AND 7B, 2006, 7A-B : 764 - 767
  • [24] Neural Partial Differentiation Based Nonlinear Parameter Estimation from Noisy Flight Data
    Mohamed, Majeed
    Madhavan, G.
    Manikantan, R.
    Priya, P. S. Lal
    2018 THE 9TH ASIA CONFERENCE ON MECHANICAL AND AEROSPACE ENGINEERING, 2019, 1215
  • [25] Algebraic parameter estimation of a multi-sinusoidal waveform signal from noisy data
    Ushirobira, Rosane
    Perruquetti, Wilfrid
    Mboup, Mamadou
    Fliess, Michel
    2013 EUROPEAN CONTROL CONFERENCE (ECC), 2013, : 1902 - 1907
  • [26] LATTICE PARAMETER ESTIMATION FROM SPARSE, NOISY MEASUREMENTS
    Quinn, Barry G.
    Clarkson, I. Vaughan L.
    2016 50TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2016, : 1821 - 1825
  • [27] Parameter estimation of a convolutional encoder from noisy observations
    Dingel, Janis
    Hagenauer, Joachim
    2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, : 1776 - 1780
  • [28] Smoothing of, and Parameter Estimation from, Noisy Biophysical Recordings
    Huys, Quentin J. M.
    Paninski, Liam
    PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (05)
  • [29] Parameter Estimation of Heavy-Tailed AR(p) Model from Incomplete Data
    Liu, Junyan
    Kumar, Sandeep
    Palomar, Daniel P.
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [30] PARAMETER ESTIMATION OF HEAVY-TAILED RANDOM WALK MODEL FROM INCOMPLETE DATA
    Liu, Junyan
    Kumar, Sandeep
    Palomar, Daniel P.
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 4439 - 4443