Impact of tunneling on hydrogen-migration of the n-propylperoxy radical

被引:80
作者
Zhang, Feng [1 ]
Dibble, Theodore S. [1 ]
机构
[1] SUNY Syracuse, Coll Environm Sci & Forestry, Dept Chem, Syracuse, NY 13210 USA
基金
美国国家科学基金会;
关键词
ALKYL PLUS O-2; DENSITY-FUNCTIONAL THERMOCHEMISTRY; NONCOVALENT INTERACTIONS; UNIMOLECULAR REACTIONS; PRODUCT FORMATION; PEROXY-RADICALS; OH PRODUCTION; KINETICS; DYNAMICS; MODEL;
D O I
10.1039/c1cp21691k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The kinetics of three unimolecular reactions of the n-propylperoxy radical were studied by canonical variational transition state theory and multidimensional small curvature tunneling (SCT). The reactions studied were 1,5 and 1,4 H-migration, and HO2 elimination. Benchmark calculations were carried out at the CCSD(T) level in order to determine which density functional to use for SCT calculations for each reaction. For 1,5 and 1,4 H-migration, and HO2 elimination, the M05-2X, B3LYP and B1B95 functionals, respectively, performed closest to the benchmark when coupled to the 6-311+ G(2df,2p) basis set. The SCT tunneling corrections, kappa(T), computed here were much larger than those calculated from the Wigner or zero-curvature tunneling treatments at low temperatures, but the asymmetric Eckart method works surprisingly well in these three reactions. Comparison of energy-dependent transmission coefficients, Gamma(E), indicates that not only the magnitude, but also the sign, of the error in the Eckart approximation is a function of energy; therefore, the error introduced by using the Eckart approach depends strongly on the steady state energy distribution. These results may provide guidance for future studies of tunneling effects in reactions of other peroxy radicals.
引用
收藏
页码:17969 / 17977
页数:9
相关论文
共 73 条
[1]   Computational Thermochemistry: Scale Factor Databases and Scale Factors for Vibrational Frequencies Obtained from Electronic Model Chemistries [J].
Alecu, I. M. ;
Zheng, Jingjing ;
Zhao, Yan ;
Truhlar, Donald G. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2010, 6 (09) :2872-2887
[2]   Experimental Confirmation of the Low-Temperature Oxidation Scheme of Alkanes [J].
Battin-Leclerc, Frederique ;
Herbinet, Olivier ;
Glaude, Pierre-Alexandre ;
Fournet, Rene ;
Zhou, Zhongyue ;
Deng, Liulin ;
Guo, Huijun ;
Xie, Mingfeng ;
Qi, Fei .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (18) :3169-3172
[3]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[4]   Density-functional thermochemistry .4. A new dynamical correlation functional and implications for exact-exchange mixing [J].
Becke, AD .
JOURNAL OF CHEMICAL PHYSICS, 1996, 104 (03) :1040-1046
[5]   Development of density functionals for thermochemical kinetics [J].
Boese, AD ;
Martin, JML .
JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (08) :3405-3416
[6]  
BORDEN WT, 1994, J CHEM SOC FARADAY T, V90, P1733
[7]   Progress toward a unified detailed kinetic model for the autoignition of alkanes from C4 to C10 between 600 and 1200 K [J].
Buda, F ;
Bounaceur, R ;
Warth, V ;
Glaude, P ;
Fournet, R ;
Battin-Leclerc, F .
COMBUSTION AND FLAME, 2005, 142 (1-2) :170-186
[8]   Detailed modeling of the reaction of C2H5+O2 [J].
Carstensen, HH ;
Naik, CV ;
Dean, AM .
JOURNAL OF PHYSICAL CHEMISTRY A, 2005, 109 (10) :2264-2281
[9]   Systematic optimization of long-range corrected hybrid density functionals [J].
Chai, Jeng-Da ;
Head-Gordon, Martin .
JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (08)
[10]   Reaction-path dynamics in redundant internal coordinates [J].
Chuang, YY ;
Truhlar, DG .
JOURNAL OF PHYSICAL CHEMISTRY A, 1998, 102 (01) :242-247