StereoDRNet: Dilated Residual StereoNet

被引:83
作者
Chabra, Rohan [1 ,2 ]
Straub, Julian [2 ]
Sweeney, Chris [2 ]
Newcombe, Richard [2 ]
Fuchs, Henry [1 ,2 ]
机构
[1] Univ N Carolina, Chapel Hill, NC 27515 USA
[2] Facebook Real Labs, Pittsburgh, PA USA
来源
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019) | 2019年
关键词
D O I
10.1109/CVPR.2019.01206
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a system that uses a convolution neural network (CNN) to estimate depth from a stereo pair followed by volumetric fusion of the predicted depth maps to produce a 3D reconstruction of a scene. Our proposed depth refinement architecture, predicts view-consistent disparity and occlusion maps that helps the fusion system to produce geometrically consistent reconstructions. We utilize 3D dilated convolutions in our proposed cost filtering network that yields better filtering while almost halving the computational cost in comparison to state of the art cost filtering architectures. For feature extraction we use the Vortex Pooling architecture [24]. The proposed method achieves state of the art results in KITTI 2012, KITTI 2015 and ETH 3D stereo benchmarks. Finally, we demonstrate that our system is able to produce high fidelity 3D scene reconstructions that outperforms the state of the art stereo system.
引用
收藏
页码:11778 / 11787
页数:10
相关论文
共 27 条
[1]  
[Anonymous], 2018, EUR C COMP VIS ECCV
[2]  
[Anonymous], 2017, ICCV WORKSH
[3]  
[Anonymous], ARXIV180708865
[4]  
[Anonymous], 2018, VORTEX POOLING IMPRO
[5]  
[Anonymous], 2016, J MACH LEARN RES
[6]  
[Anonymous], 2018, ARXIV180305196
[7]   PatchMatch Stereo - Stereo Matching with Slanted Support Windows [J].
Bleyer, Michael ;
Rhemann, Christoph ;
Rother, Carsten .
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2011, 2011,
[8]   Pyramid Stereo Matching Network [J].
Chang, Jia-Ren ;
Chen, Yong-Sheng .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :5410-5418
[9]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[10]  
Hirschmüller H, 2008, IEEE T PATTERN ANAL, V30, P328, DOI 10.1109/TPAMl.2007.1166