Parameter uncertainty, sensitivity analysis and prediction error in a water-balance hydrological model

被引:108
|
作者
Benke, Kurt K. [1 ]
Lowell, Kim E. [1 ,2 ]
Hamilton, Andrew J. [1 ,3 ]
机构
[1] Primary Ind Res Victoria Pkville Ctr, Dept Primary Ind, Parkville, Vic 3052, Australia
[2] Univ Melbourne, CRC Spatial Informat, Parkville, Vic 3052, Australia
[3] Univ Melbourne, Fac Land & Food Resources, Sch Resource Management, Richmond, Vic 3121, Australia
关键词
complex systems; error propagation; hydrological model; Monte Carlo simulation; risk; sensitivity analysis; uncertainty; 2C; 2CSalt;
D O I
10.1016/j.mcm.2007.05.017
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Analysis of uncertainty is often neglected in the evaluation of complex systems models, such as computational models used in hydrology or ecology. Prediction uncertainty arises from a variety of sources, such as input error, calibration accuracy, parameter sensitivity and parameter uncertainty. In this study, various computational approaches were investigated for analysing the impact of parameter uncertainty on predictions of streamflow for a water-balance hydrological model used in eastern Australia. The parameters and associated equations which had greatest impact on model output were determined by combining differential error analysis and Monte Carlo simulation with stochastic and deterministic sensitivity analysis. This integrated approach aids in the identification of insignificant or redundant parameters and provides support for further simplifications in the mathematical structure underlying the model. Parameter uncertainty was represented by a probability distribution and simulation experiments revealed that the shape (skewness) of the distribution had a significant effect on model output uncertainty. More specifically, increasing negative skewness of the parameter distribution correlated with decreasing width of the model output confidence interval (i.e. resulting in less uncertainty). For skewed distributions, characterisation of uncertainty is more accurate using the confidence interval from the cumulative distribution rather than using variance. The analytic approach also identified the key parameters and the non-linear flux equation most influential in affecting model output uncertainty. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1134 / 1149
页数:16
相关论文
共 50 条