共 50 条
A Deletion in NRT2.1 Attenuates Pseudomonas syringae-Induced Hormonal Perturbation, Resulting in Primed Plant Defenses
被引:60
作者:
Camanes, Gemma
[1
]
Pastor, Victoria
[1
]
Cerezo, Miguel
[1
]
Garcia-Andrade, Javier
[2
]
Vicedo, Begonya
[1
]
Garcia-Agustin, Pilar
[1
]
Flors, Victor
[1
]
机构:
[1] Univ Jaume 1, Escuela Super Tecnol & Ciencias Expt, Dept Ciencias Agr & Medio Nat, Area Fisiol Vegetal, Castellon de La Plana 12071, Spain
[2] Univ Politecn Valencia, Consejo Super Invest Cient, Inst Biol Mol & Celular Plantas, Ciudad Politecn Innovac, Valencia 46022, Spain
关键词:
AFFINITY NITRATE TRANSPORT;
ABSCISIC-ACID;
ARABIDOPSIS-THALIANA;
PV;
TOMATO;
HYPERSENSITIVE RESPONSE;
GENES ATNRT2.1;
SALICYLIC-ACID;
NO3-UPTAKE;
DISEASE;
STRESS;
D O I:
10.1104/pp.111.184424
中图分类号:
Q94 [植物学];
学科分类号:
071001 ;
摘要:
For an efficient defense response against pathogens, plants must coordinate rapid genetic reprogramming to produce an incompatible interaction. Nitrate Trasnporter2 (NRT2) gene family members are sentinels of nitrate availability. In this study, we present an additional role for NRT2.1 linked to plant resistance against pathogens. This gene antagonizes the priming of plant defenses against the bacterial pathogen Pseudomonas syringae pv tomato DC3000 (Pst). The nrt2 mutant (which is deficient in two genes, NRT2.1 and NRT2.2) displays reduced susceptibility to this bacterium. We demonstrate that modifying environmental conditions that stimulate the derepression of the NRT2.1 gene influences resistance to Pst independently of the total level of endogenous nitrogen. Additionally, hormonal homeostasis seemed to be affected in nrt2, which displays priming of salicylic acid signaling and concomitant irregular functioning of the jasmonic acid and abscisic acid pathways upon infection. Effector-triggered susceptibility and hormonal perturbation by the bacterium seem to be altered in nrt2, probably due to reduced sensitivity to the bacterial phytotoxin coronatine. The main genetic and metabolic targets of coronatine in Arabidopsis (Arabidopsis thaliana) remain largely unstimulated in nrt2 mutants. In addition, a P. syringae strain defective in coronatine synthesis showed the same virulence toward nrt2 as the coronatine-producing strain. Taken together, the reduced susceptibility of nrt2 mutants seems to be a combination of priming of salicylic acid-dependent defenses and reduced sensitivity to the bacterial effector coronatine. These results suggest additional functions for NRT2.1 that may influence plant disease resistance by down-regulating biotic stress defense mechanisms and favoring abiotic stress responses.
引用
收藏
页码:1054 / 1066
页数:13
相关论文