DiBa: A Data-Driven Bayesian Algorithm for Sleep Spindle Detection

被引:29
作者
Babadi, Behtash [2 ,3 ]
McKinney, Scott M. [4 ]
Tarokh, Vahid [5 ]
Ellenbogen, Jeffrey M. [1 ,6 ]
机构
[1] Harvard Univ, Sch Med, Div Sleep Med, Boston, MA 02215 USA
[2] Massachusetts Gen Hosp, Dept Anesthesia Crit Care & Pain Med, Boston, MA 02114 USA
[3] MIT, Dept Brain & Cognit Sci, Cambridge, MA 02139 USA
[4] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
[5] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[6] Massachusetts Gen Hosp, Dept Neurol, Boston, MA 02114 USA
关键词
Bayesian methods; electroencephalography (EEG); Karhunen-Loeve (KL) transform; medical signal detection; sleep spindles; AUTOMATED DETECTION; EEG; AMPLITUDE; AGE;
D O I
10.1109/TBME.2011.2175225
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Although the spontaneous brain rhythms of sleep have commanded much recent interest, their detection and analysis remains suboptimal. In this paper, we develop a data-driven Bayesian algorithm for sleep spindle detection on the electroencephalography (EEG). The algorithm exploits the Karhunen-Loeve transform and Bayesian hypothesis testing to produce the instantaneous probability of a spindle's presence with maximal resolution. In addition to possessing flexibility, transparency, and scalability, this algorithm could perform at levels superior to standard methods for EEG event detection.
引用
收藏
页码:483 / 493
页数:11
相关论文
共 47 条
[1]   ALL-NIGHT DYNAMICS OF THE HUMAN SLEEP EEG [J].
AESCHBACH, D ;
BORBELY, AA .
JOURNAL OF SLEEP RESEARCH, 1993, 2 (02) :70-81
[2]   Artifact processing in computerized analysis of sleep EEG -: A review [J].
Anderer, P ;
Roberts, S ;
Schlögl, A ;
Gruber, G ;
Klösch, G ;
Herrmann, W ;
Rappelsberger, P ;
Filz, O ;
Barbanoj, MJ ;
Dorffner, G ;
Saletu, B .
NEUROPSYCHOBIOLOGY, 1999, 40 (03) :150-157
[3]  
[Anonymous], Philosophical Transactions of the Royal Society of London for, DOI DOI 10.1098/RSTL.1763.0053
[4]  
[Anonymous], 1998, TR97021 INT COMP SCI
[5]   CHARACTERISTICS OF SPINDLE ACTIVITY AND THEIR USE IN EVALUATION OF HYPNOTICS [J].
AZUMI, K ;
SHIRAKAWA, S .
SLEEP, 1982, 5 (01) :95-105
[6]  
Barros AK, 2000, PERSP NEURAL COMP, P125
[7]   The individual adjustment method of sleep spindle analysis: Methodological improvements and roots in the fingerprint paradigm [J].
Bodizs, Robert ;
Kormendi, Janos ;
Rigo, Peter ;
Lazar, Alpar Sandor .
JOURNAL OF NEUROSCIENCE METHODS, 2009, 178 (01) :205-213
[8]  
Buzaki G., 2006, Rhythms of the Brain, DOI 10.1093/acprof:oso/9780195301069.001.0001
[9]   Automated Sleep-Spindle Detection in Healthy Children Polysomnograms [J].
Causa, Leonardo ;
Held, Claudio M. ;
Causa, Javier ;
Estevez, Pablo A. ;
Perez, Claudio A. ;
Chamorro, Rodrigo ;
Garrido, Marcelo ;
Algarin, Cecilia ;
Peirano, Patricio .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2010, 57 (09) :2135-2146
[10]   Spontaneous brain rhythms predict sleep stability in the face of noise [J].
Dang-Vu, Thien Thanh ;
McKinney, Scott M. ;
Buxton, Orfeu M. ;
Solet, Jo M. ;
Ellenbogen, Jeffrey M. .
CURRENT BIOLOGY, 2010, 20 (15) :R626-R627