Prediction of burden descent speed in blast furnace based on extreme learning machine

被引:0
作者
Guan, Xin [1 ]
Yin, Yixin [2 ]
Zhang, Sen [2 ]
Zhang, Haigang [2 ]
机构
[1] Lingnan Normal Univ, Sch Informat Engn, Zhanjiang 524048, Guangdong, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
来源
JOURNAL OF ENGINEERING RESEARCH | 2017年 / 5卷 / 04期
基金
中国国家自然科学基金;
关键词
Burden charging; blast furnace; descent speed; extreme learning machine; SYSTEM;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The burden charging is the most important operation of the upper operations in blast furnace. The position and descent speed of burden layer can reflect the situation of blast furnace and can guide the operators in the next burden charging. In this paper, the descent speed prediction model of burden layer is established by extreme learning machine algorithm. The model can make single-step and multi-step predictions to the burden descent speed using real radar data and status information in blast furnace. In the simulation part, we collected the real production data in iron-making process and obtained the satisfied and accurate simulation results by employing the proposed scheme.
引用
收藏
页码:121 / 134
页数:14
相关论文
共 17 条
[1]   3-Dimension Imaging System of Burden Surface with 6-radars Array in a Blast Furnace [J].
Chen, Xianzhong ;
Wei, Jidong ;
Xu, Ding ;
Hou, Qingwen ;
Bai, Zhenlong .
ISIJ INTERNATIONAL, 2012, 52 (11) :2048-2054
[2]   Error Minimized Extreme Learning Machine With Growth of Hidden Nodes and Incremental Learning [J].
Feng, Guorui ;
Huang, Guang-Bin ;
Lin, Qingping ;
Gay, Robert .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20 (08) :1352-1357
[3]   Modeling of the Thermal State Change of Blast Furnace Hearth With Support Vector Machines [J].
Gao, Chuanhou ;
Jian, Ling ;
Luo, Shihua .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2012, 59 (02) :1134-1145
[4]  
HINNELA J., 2010, MINER PROCESS EXTR M, V25, P1
[5]   Extreme learning machine: Theory and applications [J].
Huang, Guang-Bin ;
Zhu, Qin-Yu ;
Siew, Chee-Kheong .
NEUROCOMPUTING, 2006, 70 (1-3) :489-501
[6]   What are Extreme Learning Machines? Filling the Gap Between Frank Rosenblatt's Dream and John von Neumann's Puzzle [J].
Huang, Guang-Bin .
COGNITIVE COMPUTATION, 2015, 7 (03) :263-278
[7]   Extreme Learning Machine for Regression and Multiclass Classification [J].
Huang, Guang-Bin ;
Zhou, Hongming ;
Ding, Xiaojian ;
Zhang, Rui .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2012, 42 (02) :513-529
[8]   Extreme learning machines: a survey [J].
Huang, Guang-Bin ;
Wang, Dian Hui ;
Lan, Yuan .
INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2011, 2 (02) :107-122
[9]  
Ichida M., 2007, TIANJIN METALLURGY, V142, P46
[10]   Binary Coding SVMs for the Multiclass Problem of Blast Furnace System [J].
Jian, Ling ;
Gao, Chuanhou .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2013, 60 (09) :3846-3856