Zonal-harmonics perturbations

被引:9
作者
Vrbik, J [1 ]
机构
[1] Brock Univ, Dept Math, St Catharines, ON L2S 3A1, Canada
关键词
Kepler problem; Kustaanheimo-Stiefel equation; zonal harmonics;
D O I
10.1007/s10569-004-2294-3
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A recently developed iterative technique for solving the perturbed Kepler problem is explained, in a step-by-step detail, using the simple example of oblateness perturbations. The results are then extended to deal with higher-degree zonal harmonics.
引用
收藏
页码:217 / 237
页数:21
相关论文
共 14 条
[1]   SOLUTION OF THE PROBLEM OF ARTIFICIAL SATELLITE THEORY WITHOUT DRAG [J].
BROUWER, D .
ASTRONOMICAL JOURNAL, 1959, 64 (09) :378-397
[2]  
Deprit A., 1970, Celestial Mechanics, V2, P166, DOI 10.1007/BF01229494
[3]  
Hamilton W. R., 1856, Philos. Mag., V12, P446
[4]  
Hestenes D, 1993, NEW FDN CLASSICAL ME
[5]   Mapping of three dimensional spheres on spheric surphaces [J].
Hopf, H .
MATHEMATISCHE ANNALEN, 1931, 104 :637-665
[6]   THE MOTION OF A CLOSE EARTH SATELLITE [J].
KOZAI, Y .
ASTRONOMICAL JOURNAL, 1959, 64 (09) :367-377
[7]  
KUSTAANHEIMO P, 1965, J REINE ANGEW MATH, V218, P204
[8]   Numerical comparison of two-body regularizations [J].
Fukushima, Toshio .
ASTRONOMICAL JOURNAL, 2007, 133 (06) :2815-2824
[9]  
Stiefel E.L., 1971, Linear and Regular Celestial Mechanics, DOI DOI 10.1007/978-3-642-65027-7
[10]  
Vivarelli M. D., 1994, MECCANICA, V29, P15