Approximation Schemes for Machine Scheduling

被引:0
作者
Maack, Marten [1 ,2 ]
机构
[1] Paderborn Univ, Heinz Nixdorf Inst, Paderborn, Germany
[2] Paderborn Univ, Dept Comp Sci, Paderborn, Germany
来源
OPERATIONS RESEARCH PROCEEDINGS 2021 | 2022年
关键词
Scheduling; Parallel machines; Makespan; Approximation; PTAS; ALGORITHMS;
D O I
10.1007/978-3-031-08623-6_4
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Makespan minimization on identical parallel machines, or machine scheduling for short, is a fundamental problem in combinatorial optimization. In this problem, a set of jobs with processing times has to be assigned to a set of machines with the goal of minimizing the latest finishing time of the jobs, i.e., the makespan. While machine scheduling in NP-hard and therefore does not admit a polynomial time algorithm guaranteed to find an optimal solution (unless P=NP), there is a wellknown polynomial time approximation scheme (PTAS) for this problem, i.e., a family of (1 + epsilon)-approximations for each epsilon > 0. The question of whether there is a PTAS for a given problem is considered fundamental in approximation theory. The author's dissertation considers this question for several variants of machine scheduling, and the present work summarizes the dissertation.
引用
收藏
页码:21 / 26
页数:6
相关论文
共 17 条
  • [1] Alon N., 1998, Journal of Scheduling, V1, P55, DOI 10.1002/(SICI)1099-1425(199806)1:1<55::AID-JOS2>3.0.CO
  • [2] 2-J
  • [3] Bonifaci V., 2012, ABS12050974 CORR
  • [4] Eisenbrand F., 2019, ABS190401361 CORR
  • [5] BOUNDS ON MULTIPROCESSING TIMING ANOMALIES
    GRAHAM, RL
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1969, 17 (02) : 416 - &
  • [6] BOUNDS FOR CERTAIN MULTIPROCESSING ANOMALIES
    GRAHAM, RL
    [J]. BELL SYSTEM TECHNICAL JOURNAL, 1966, 45 (09): : 1563 - +
  • [7] USING DUAL APPROXIMATION ALGORITHMS FOR SCHEDULING PROBLEMS - THEORETICAL AND PRACTICAL RESULTS
    HOCHBAUM, DS
    SHMOYS, DB
    [J]. JOURNAL OF THE ACM, 1987, 34 (01) : 144 - 162
  • [8] Jansen K., 2019, 10 INNOVATIONS THEOR, P441
  • [9] Structural parameters for scheduling with assignment restrictions
    Jansen, Klaus
    Maack, Marten
    Solis-Oba, Roberto
    [J]. THEORETICAL COMPUTER SCIENCE, 2020, 844 (844) : 154 - 170
  • [10] Scheduling on (Un-)Related Machines with Setup Times
    Jansen, Klaus
    Maack, Marten
    Maecker, Alexander
    [J]. 2019 IEEE 33RD INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS 2019), 2019, : 145 - 154