Distinguishing 6D (1,0) SCFTs: An extension to the geometric construction

被引:16
作者
Distler, Jacques [1 ]
Kang, Monica Jinwoo [2 ]
Lawrie, Craig [3 ]
机构
[1] Univ Texas Austin, Dept Phys, Theory Grp, Austin, TX 78712 USA
[2] CALTECH, Walter Burke Inst Theoret Phys, Pasadena, CA 91125 USA
[3] Deutsch Elektronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany
基金
美国国家科学基金会;
关键词
F-THEORY; UNIPOTENT ELEMENTS; COMPACTIFICATIONS; CLASSIFICATION;
D O I
10.1103/PhysRevD.106.066011
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We provide a new extension to the geometric construction of six-dimensional (6D) (1,0) superconformal field theories (SCFTs) that encapsulates Higgs branch structures with identical global symmetry but different spectra. In particular, we find that there exist distinct 6D (1,0) SCFTs that may appear to share their tensor branch description, flavor symmetry algebras, and central charges. For example, such subtleties arise for the very even nilpotent Higgsing of (su4k, su4k) conformal matter; we propose a method to predict at which conformal dimension the Higgs branch operators of the two theories differ via augmenting the tensor branch description with the Higgs branch chiral ring generators of the building block theories. Torus compactifications of these 6D (1,0) SCFTs give rise to four-dimensional (4D) N 1/4 2 SCFTs of class-S, and the Higgs branch of such 4D theories are captured via the Hall-Littlewood index. We confirm that the resulting 4D theories indeed differ in their spectra in the predicted conformal dimension from their Hall-Littlewood indices. We highlight how this ambiguity in the tensor branch description arises beyond the very even nilpotent Higgsing of (su4k, su4k) conformal matter and hence should be understood for more general classes of 6D (1,0) SCFTs.
引用
收藏
页数:17
相关论文
共 75 条
[1]   T-branes at the limits of geometry [J].
Anderson, Lara B. ;
Heckman, Jonathan J. ;
Katz, Sheldon ;
Schaposnik, Laura P. .
JOURNAL OF HIGH ENERGY PHYSICS, 2017, (10)
[2]   T-branes and geometry [J].
Anderson, Lara B. ;
Heckman, Jonathan J. ;
Katz, Sheldon .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (05)
[3]   Terminal singularities, Milnor numbers, and matter in F-theory [J].
Arras, Philipp ;
Grassi, Antonella ;
Weigand, Timo .
JOURNAL OF GEOMETRY AND PHYSICS, 2018, 123 :71-97
[4]   CLASSES OF UNIPOTENT ELEMENTS IN SIMPLE ALGEBRAIC GROUPS .1. [J].
BALA, P ;
CARTER, RW .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1976, 79 (MAY) :401-425
[5]   CLASSES OF UNIPOTENT ELEMENTS IN SIMPLE ALGEBRAIC GROUPS .2. [J].
BALA, P ;
CARTER, RW .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1976, 80 (JUL) :1-18
[6]  
Baume F, 2021, Arxiv, DOI arXiv:2106.11990
[7]   Bootstrapping (D, D) conformal matter [J].
Baume, Florent ;
Lawrie, Craig .
PHYSICAL REVIEW D, 2022, 105 (04)
[8]   6D SCFTs, 4D SCFTs, conformal matter, and spin chains [J].
Baume, Florent ;
Heckman, Jonathan J. ;
Lawrie, Craig .
NUCLEAR PHYSICS B, 2021, 967
[9]  
Beem C, 2015, J HIGH ENERGY PHYS, DOI 10.1007/JHEP05(2015)020
[10]   Infinite Chiral Symmetry in Four Dimensions [J].
Beem, Christopher ;
Lemos, Madalena ;
Liendo, Pedro ;
Peelaers, Wolfger ;
Rastelli, Leonardo ;
van Rees, Balt C. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 336 (03) :1359-1433