Predicting myocardial infarction through retinal scans and minimal personal information

被引:52
作者
Diaz-Pinto, Andres [1 ,2 ]
Ravikumar, Nishant [1 ,2 ]
Attar, Rahman [1 ,2 ]
Suinesiaputra, Avan [1 ,2 ]
Zhao, Yitian [3 ]
Levelt, Eylem [2 ,4 ]
Dall'Armellina, Erica [2 ,4 ]
Lorenzi, Marco [5 ]
Chen, Qingyu [6 ]
Keenan, Tiarnan D. L. [7 ]
Agron, Elvira [7 ]
Chew, Emily Y. [7 ]
Lu, Zhiyong [6 ]
Gale, Chris P. [2 ,4 ,8 ]
Gale, Richard P. [9 ,10 ]
Plein, Sven [2 ,4 ]
Frangi, Alejandro F. [1 ,2 ,11 ,12 ,13 ]
机构
[1] Univ Leeds, Ctr Computat Imaging & Simulat Technol Biomed, Sch Comp, Leeds, W Yorkshire, England
[2] Univ Leeds, Sch Med, Leeds Inst Cardiovasc & Metab Med, Leeds, W Yorkshire, England
[3] Chinese Acad Sci, Cixi Inst Biomed Engn, Ningbo Inst Mat Technol & Engn, Ningbo, Peoples R China
[4] Leeds Teaching Hosp NHS Trust, Dept Cardiol, Leeds, W Yorkshire, England
[5] Univ Cote Azur, Epione Project Team, Inria Sophia Antipolis, Biot, France
[6] NIH, Natl Ctr Biotechnol Informat, Natl Lib Med, Bldg 10, Bethesda, MD 20892 USA
[7] NEI, Div Epidemiol & Clin Applicat, NIH, Bethesda, MD 20892 USA
[8] Univ Leeds, Leeds Inst Data Analyt, Leeds, W Yorkshire, England
[9] York Teaching Hosp NHS Fdn Trust, Dept Ophthalmol, York, N Yorkshire, England
[10] Univ York, Dept Hlth Sci, York, N Yorkshire, England
[11] Katholieke Univ Leuven, Dept Cardiovasc Sci, Leuven, Belgium
[12] Katholieke Univ Leuven, Dept Elect Engn, Leuven, Belgium
[13] Alan Turing Inst, London, England
基金
美国国家卫生研究院; 英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
CARDIOVASCULAR-DISEASE; HEMOGLOBIN A(1C); RISK; MORTALITY; HYPERTENSION; MASS;
D O I
10.1038/s42256-021-00427-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In ophthalmologic practice, retinal images are routinely obtained to diagnose and monitor primary eye diseases and systemic conditions affecting the eye, such as diabetic retinopathy. Recent studies have shown that biomarkers on retinal images, for example, retinal blood vessel density or tortuosity, are associated with cardiac function and may identify patients at risk of coronary artery disease. In this work we investigate the use of retinal images, alongside relevant patient metadata, to estimate left ventricular mass and left ventricular end-diastolic volume, and subsequently, predict incident myocardial infarction. We trained a multichannel variational autoencoder and a deep regressor model to estimate left ventricular mass (4.4 (-32.30, 41.1) g) and left ventricular end-diastolic volume (3.02 (-53.45, 59.49) ml) and predict risk of myocardial infarction (AUC = 0.80 +/- 0.02, sensitivity = 0.74 +/- 0.02, specificity = 0.71 +/- 0.03) using just the retinal images and demographic data. Our results indicate that one could identify patients at high risk of future myocardial infarction from retinal imaging available in every optician and eye clinic. Routine eye clinic imaging could help screen patients with cardiovascular risk as studies indicate strong associations between biomarkers in the retina and the heart. This potential is supported by a multimodal study, employing a deep learning model, that can infer cardiac functional indices based on retinal images and demographic data.
引用
收藏
页码:55 / +
页数:15
相关论文
共 40 条
  • [1] Age-Related Eye Dis Study Res Grp, 2001, AM J OPHTHALMOL, V132, P668
  • [2] Antelmi L., 2019, PR MACH LEARN RES, P302
  • [3] 3D Cardiac Shape Prediction with Deep Neural Networks: Simultaneous Use of Images and Patient Metadata
    Attar, Rahman
    Pereanez, Marco
    Bowles, Christopher
    Piechnik, Stefan K.
    Neubauer, Stefan
    Petersen, Steffen E.
    Frangi, Alejandro F.
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II, 2019, 11765 : 586 - 594
  • [4] Quantitative CMR population imaging on 20,000 subjects of the UK Biobank imaging study: LV/RV quantification pipeline and its evaluation
    Attar, Rahman
    Pereanez, Marco
    Gooya, Ali
    Alba, Xenia
    Zhang, Le
    de Vila, Milton Hoz
    Lee, Aaron M.
    Aung, Nay
    Lukaschuk, Elena
    Sanghvi, Mihir M.
    Fung, Kenneth
    Paiva, Jose Miguel
    Piechnik, Stefan K.
    Neubauer, Stefan
    Petersen, Steffen E.
    Frangi, Alejandro F.
    [J]. MEDICAL IMAGE ANALYSIS, 2019, 56 : 26 - 42
  • [5] Automated cardiovascular magnetic resonance image analysis with fully convolutional networks
    Bai, Wenjia
    Sinclair, Matthew
    Tarroni, Giacomo
    Oktay, Ozan
    Rajchl, Martin
    Vaillant, Ghislain
    Lee, Aaron M.
    Aung, Nay
    Lukaschuk, Elena
    Sanghvi, Mihir M.
    Zemrak, Filip
    Fung, Kenneth
    Paiva, Jose Miguel
    Carapella, Valentina
    Kim, Young Jin
    Suzuki, Hideaki
    Kainz, Bernhard
    Matthews, Paul M.
    Petersen, Steffen E.
    Piechnik, Stefan K.
    Neubauer, Stefan
    Glocker, Ben
    Rueckert, Daniel
    [J]. JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2018, 20
  • [6] Quantitative and qualitative retinal microvascular characteristics and blood pressure
    Cheung, Carol Y.
    Tay, Wan T.
    Mitchell, Paul
    Wang, Jie J.
    Hsu, Wynne
    Lee, Mong L.
    Lau, Qiangfeng P.
    Zhu, Ai L.
    Klein, Ronald
    Saw, Seang M.
    Wong, Tien Y.
    [J]. JOURNAL OF HYPERTENSION, 2011, 29 (07) : 1380 - 1391
  • [7] General cardiovascular risk profile for use in primary care - The Framingham Heart Study
    D'Agostino, Ralph B.
    Vasan, Ramachandran S.
    Pencina, Michael J.
    Wolf, Philip A.
    Cobain, Mark
    Massaro, Joseph M.
    Kannel, William B.
    [J]. CIRCULATION, 2008, 117 (06) : 743 - 753
  • [8] Clinical Classification of Age-related Macular Degeneration
    Ferris, Frederick L., III
    Wilkinson, C. P.
    Bird, Alan
    Chakravarthy, Usha
    Chew, Emily
    Csaky, Karl
    Sadda, SriniVas R.
    [J]. OPHTHALMOLOGY, 2013, 120 (04) : 844 - 851
  • [9] Evaluation of Retinal Image Quality Assessment Networks in Different Color-Spaces
    Fu, Huazhu
    Wang, Boyang
    Shen, Jianbing
    Cui, Shanshan
    Xu, Yanwu
    Liu, Jiang
    Shao, Ling
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT I, 2019, 11764 : 48 - 56
  • [10] Automated Identification of Diabetic Retinopathy Using Deep Learning
    Gargeya, Rishab
    Leng, Theodore
    [J]. OPHTHALMOLOGY, 2017, 124 (07) : 962 - 969