Harmonic moments, large and moderate deviation principles for Mandelbrot's cascade in a random environment

被引:6
作者
Li, Yingqiu [1 ]
Liu, Quansheng [2 ]
Peng, Xuelian [1 ,3 ]
机构
[1] Changsha Univ sci & Technol, Sch Math, Changsha 410114, Hunan, Peoples R China
[2] Univ Bretagne Sud, UMR 6205, LMBA, F-56000 Vannes, France
[3] Wuhan Qingchuan Univ, Dept Publ Studies, Wuhan 430204, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Mandelbrot's cascade; Branching random walk; Random environment; Harmonic moments; Large deviations; Moderate deviations; CENTRAL LIMIT-THEOREMS; BRANCHING RANDOM-WALK; CONVERGENCE;
D O I
10.1016/j.spl.2018.10.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For Mandelbrot's cascade in a random environment, we find the critical value for the existence of harmonic moments of the limit variable of Mandelbrot's martingale, and establish large and moderate deviation principles for the free energy. As applications, we show the corresponding limit theorems for branching random walks in random environments. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:57 / 65
页数:9
相关论文
共 22 条
  • [1] [Anonymous], 2017, PREPRINT
  • [2] Bansaye V., 2009, Markov Proc. Relat. Fields, V15, P493
  • [3] Barral J, 1999, PROBAB THEORY REL, V113, P535, DOI 10.1007/s004400050217
  • [4] Gaussian Multiplicative Chaos and KPZ Duality
    Barral, Julien
    Jin, Xiong
    Rhodes, Remi
    Vargas, Vincent
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 323 (02) : 451 - 485
  • [5] Measure change in multitype branching
    Biggins, JD
    Kyprianou, AE
    [J]. ADVANCES IN APPLIED PROBABILITY, 2004, 36 (02) : 544 - 581
  • [6] Chow Y.S., 1995, PROBABILITY THEORY I
  • [7] Dembo A., 1998, Large Deviations Techniques and Applications
  • [8] Exact convergence rates in central limit theorems for a branching random walk with a random environment in time
    Gao, Zhiqiang
    Liu, Quansheng
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2016, 126 (09) : 2634 - 2664
  • [9] CENTRAL LIMIT THEOREMS FOR A BRANCHING RANDOM WALK WITH A RANDOM ENVIRONMENT IN TIME
    Gao, Zhiqiang
    Liu, Quansheng
    Wang, Hesong
    [J]. ACTA MATHEMATICA SCIENTIA, 2014, 34 (02) : 501 - 512
  • [10] MINIMAL POSITION AND CRITICAL MARTINGALE CONVERGENCE IN BRANCHING RANDOM WALKS, AND DIRECTED POLYMERS ON DISORDERED TREES
    Hu, Yueyun
    Shi, Zhan
    [J]. ANNALS OF PROBABILITY, 2009, 37 (02) : 742 - 789