Effects of 5-aminolevulinic acid on growth and amylase activity in the radish taproot

被引:13
|
作者
Hara, Masakazu [1 ]
Takahashi, Ikuo [1 ]
Yamori, Michiyo [1 ]
Tanaka, Toru [2 ]
Funada, Shigeyuki [2 ]
Watanabe, Keitaro [2 ]
机构
[1] Shizuoka Univ, Fac Agr, Suruga Ku, Shizuoka 4228529, Japan
[2] Cosmo Oil Co Ltd, Ctr Res & Dev, Satte, Saitama 3400193, Japan
基金
日本学术振兴会;
关键词
5-Aminolevulinic acid; beta-Amylase (EC 3.2.1.2); Plant growth; Raphanus sativus; SEEDLINGS; L; PHOTOSYNTHESIS; BIOSYNTHESIS; PROMOTION; STRESS; OXYGEN;
D O I
10.1007/s10725-010-9542-1
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
5-Aminolevulinic acid (ALA) promotes the growth of plants by enhancing their photosynthetic activities, but there is little information on how ALA influences the metabolism of sugars produced by photosynthesis. Here, we report the effects of ALA on tissue growth, sugar content, and amylase activity in the radish taproot. 5-Aminolevulinic acid was applied with a foliar spray (5.3-13,500 mu M), and application at concentrations of 53, 530, and 2,700 mu M enhanced the fresh weight of the taproot. Glucose is a major soluble sugar of the radish taproot. 5-Aminolevulinic acid slightly increased the glucose content but did not influence the fructose, sucrose, or starch contents. Radishes have beta-amylase (RsBAMY1), which is expressed in the taproot. 5-Aminolevulinic acid enhanced both the amylase activity and the RsBAMY1 protein accumulation. These results suggest that ALA may control starch accumulation by increasing the RsBAMY1 expression in the radish taproot. The relationship between taproot growth and free sugar accumulation by ALA is also discussed.
引用
收藏
页码:287 / 291
页数:5
相关论文
共 50 条
  • [41] Prodrugs of 5-aminolevulinic acid for photodynamic therapy
    Kloek, J
    vanHenegouwen, GMJB
    PHOTOCHEMISTRY AND PHOTOBIOLOGY, 1996, 64 (06) : 994 - 1000
  • [42] Effect of glucose on 5-aminolevulinic acid synthase
    Kolluri, S
    Sadlon, TJ
    May, BK
    Bonkovsky, HL
    FASEB JOURNAL, 2000, 14 (08): : A1444 - A1444
  • [43] Degradation mechanism and stability of 5-aminolevulinic acid
    Bunke, A
    Zerbe, O
    Schmid, H
    Burmeister, G
    Merkle, HP
    Gander, B
    JOURNAL OF PHARMACEUTICAL SCIENCES, 2000, 89 (10) : 1335 - 1341
  • [44] Electrodialysis purification of 5-aminolevulinic acid hydrochloride
    A. A. Konarev
    E. A. Luk’yanets
    Russian Journal of Applied Chemistry, 2012, 85 : 1550 - 1553
  • [45] 5-Aminolevulinic Acid Imaging of Malignant Glioma
    Li, Guan
    Rodrigues, Adrian
    Kim, Lily
    Garcia, Cesar
    Jain, Shruti
    Zhang, Michael
    Hayden-Gephart, Melanie
    SURGICAL ONCOLOGY CLINICS OF NORTH AMERICA, 2022, 31 (04) : 581 - 593
  • [46] 5-aminolevulinic acid formation in Arabidopsis thaliana
    Hori, N
    Kumar, AM
    Verkamp, E
    Soll, D
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 1996, 34 (01) : 3 - 9
  • [47] SCREENING OF 5-AMINOLEVULINIC ACID DEHYDRATASE INHIBITORS
    TANAKA, T
    KAKIZONO, T
    NISHIKAWA, S
    WATANABE, K
    SASAKI, K
    NISHIO, N
    NAGAI, S
    SEIBUTSU-KOGAKU KAISHI-JOURNAL OF THE SOCIETY FOR FERMENTATION AND BIOENGINEERING, 1995, 73 (01): : 13 - 19
  • [48] Electrodialysis purification of 5-aminolevulinic acid hydrochloride
    Konarev, A. A.
    Luk'yanets, E. A.
    RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2012, 85 (10) : 1550 - 1553
  • [49] Sonodynamic therapy with 5-aminolevulinic acid for angiosarcoma
    Ozawa, T.
    Furukawa, H.
    Noma, N.
    Tsuruta, D.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2017, 137 (10) : S292 - S292
  • [50] PRODUCTION OF 5-AMINOLEVULINIC ACID BY PHOTOSYNTHETIC BACTERIA
    SASAKI, K
    IKEDA, S
    NISHIZAWA, Y
    HAYASHI, M
    JOURNAL OF FERMENTATION TECHNOLOGY, 1987, 65 (05): : 511 - 515