Antimalarial Drug Predictions Using Molecular Descriptors and Machine Learning against Plasmodium Falciparum

被引:15
作者
Mswahili, Medard Edmund [1 ]
Martin, Gati Lother [1 ]
Woo, Jiyoung [1 ]
Choi, Guang J. [2 ]
Jeong, Young-Seob [3 ]
机构
[1] Soonchunhyang Univ, Dept ICT Convergence, Asan 31538, South Korea
[2] Soonchunhyang Univ, Dept Pharmaceut Engn, Asan 31538, South Korea
[3] Chungbuk Natl Univ, Dept Comp Engn, Cheongju 28644, South Korea
关键词
antimalarial drug; machine learning; plasmodium falciparum; molecular descriptor; drug discovery; feature selection; PaDEL; ARTEMISININ RESISTANCE; MALARIA; AUTOCORRELATION; VIRULENCE; BIOLOGY; PACKAGE; IMPACT;
D O I
10.3390/biom11121750
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Malaria remains by far one of the most threatening and dangerous illnesses caused by the plasmodium falciparum parasite. Chloroquine (CQ) and first-line artemisinin-based combination treatment (ACT) have long been the drug of choice for the treatment and controlling of malaria; however, the emergence of CQ-resistant and artemisinin resistance parasites is now present in most areas where malaria is endemic. In this work, we developed five machine learning models to predict antimalarial bioactivities of a drug against plasmodium falciparum from the features (i.e., molecular descriptors values) obtained from PaDEL software from SMILES of compounds and compare the machine learning models by experiments with our collected data of 4794 instances. As a consequence, we found that three models amongst the five, namely artificial neural network (ANN), extreme gradient boost (XGB), and random forest (RF), outperform the others in terms of accuracy while observing that, using roughly a quarter of the promising descriptors picked by the feature selection algorithm, the five models achieved equivalent and comparable performance. Nevertheless, the contribution of all molecular descriptors in the models was investigated through the comparison of their rank values by the feature selection algorithm and found that the most potent and relevant descriptors which come from the 'Autocorrelation' module contributed more while the 'Atom type electrotopological state' contributed the least to the model.
引用
收藏
页数:15
相关论文
共 59 条
  • [1] Aliyu W.M., 2020, HELIYON, V6
  • [2] [Anonymous], 2010, ICML
  • [3] Spread of Artemisinin Resistance in Plasmodium falciparum Malaria
    Ashley, E. A.
    Dhorda, M.
    Fairhurst, R. M.
    Amaratunga, C.
    Lim, P.
    Suon, S.
    Sreng, S.
    Anderson, J. M.
    Mao, S.
    Sam, B.
    Sopha, C.
    Chuor, C. M.
    Nguon, C.
    Sovannaroth, S.
    Pukrittayakamee, S.
    Jittamala, P.
    Chotivanich, K.
    Chutasmit, K.
    Suchatsoonthorn, C.
    Runcharoen, R.
    Hien, T. T.
    Thuy-Nhien, N. T.
    Thanh, N. V.
    Phu, N. H.
    Htut, Y.
    Han, K-T.
    Aye, K. H.
    Mokuolu, O. A.
    Olaosebikan, R. R.
    Folaranmi, O. O.
    Mayxay, M.
    Khanthavong, M.
    Hongvanthong, B.
    Newton, P. N.
    Onyamboko, M. A.
    Fanello, C. I.
    Tshefu, A. K.
    Mishra, N.
    Valecha, N.
    Phyo, A. P.
    Nosten, F.
    Yi, P.
    Tripura, R.
    Borrmann, S.
    Bashraheil, M.
    Peshu, J.
    Faiz, M. A.
    Ghose, A.
    Hossain, M. A.
    Samad, R.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2014, 371 (05) : 411 - 423
  • [4] Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic
    Blasco, Benjamin
    Leroy, Didier
    Fidock, David A.
    [J]. NATURE MEDICINE, 2017, 23 (08) : 917 - 928
  • [5] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [6] BROTO P, 1984, EUR J MED CHEM, V19, P66
  • [7] Buitinck L., 2013, ECML PKDD WORKSHOP L, P108
  • [8] The role of antibodies to Plasmodium falciparum-infected-erythrocyte surface antigens in naturally acquired immunity to malaria
    Bull, PC
    Marsh, K
    [J]. TRENDS IN MICROBIOLOGY, 2002, 10 (02) : 55 - 58
  • [9] A tutorial on Support Vector Machines for pattern recognition
    Burges, CJC
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) : 121 - 167
  • [10] Burgess D.J, 2014, NAT REV GENET, V15, P147