Evolutionary Diagnosis of non-synonymous variants involved in differential drug response

被引:10
作者
Gerek, Nevin Z. [1 ]
Liu, Li [1 ,4 ]
Gerold, Kristyn [4 ]
Biparva, Pegah [4 ]
Thomas, Eric D. [1 ]
Kumar, Sudhir [1 ,2 ,3 ]
机构
[1] Temple Univ, Inst Genom & Evolutionary Med, Philadelphia, PA 19122 USA
[2] Temple Univ, Dept Biol, Philadelphia, PA 19122 USA
[3] King Abdulaziz Univ, Ctr Excellence Genome Med & Res, Jeddah 21413, Saudi Arabia
[4] Arizona State Univ, Ctr Evolutionary Med & Informat, Biodesign Inst, Tempe, AZ 85287 USA
来源
BMC MEDICAL GENOMICS | 2015年 / 8卷
基金
美国国家卫生研究院;
关键词
MENDELIAN DISEASE; MUTATIONS; SELECTION; PHARMACOGENETICS; VARIABILITY; METABOLISM; REGRESSION; KNOWLEDGE; MEDICINE; DATABASE;
D O I
10.1186/1755-8794-8-S1-S6
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background: Many pharmaceutical drugs are known to be ineffective or have negative side effects in a substantial proportion of patients. Genomic advances are revealing that some non-synonymous single nucleotide variants (nsSNVs) may cause differences in drug efficacy and side effects. Therefore, it is desirable to evaluate nsSNVs of interest in their ability to modulate the drug response. Results: We found that the available data on the link between drug response and nsSNV is rather modest. There were only 31 distinct drug response-altering (DR-altering) and 43 distinct drug response-neutral (DR-neutral) nsSNVs in the whole Pharmacogenomics Knowledge Base (PharmGKB). However, even with this modest dataset, it was clear that existing bioinformatics tools have difficulties in correctly predicting the known DR-altering and DR-neutral nsSNVs. They exhibited an overall accuracy of less than 50%, which was not better than random diagnosis. We found that the underlying problem is the markedly different evolutionary properties between positions harboring nsSNVs linked to drug responses and those observed for inherited diseases. To solve this problem, we developed a new diagnosis method, Drug-EvoD, which was trained on the evolutionary properties of nsSNVs associated with drug responses in a sparse learning framework. Drug-EvoD achieves a TPR of 84% and a TNR of 53%, with a balanced accuracy of 69%, which improves upon other methods significantly. Conclusions: The new tool will enable researchers to computationally identify nsSNVs that may affect drug responses. However, much larger training and testing datasets are needed to develop more reliable and accurate tools.
引用
收藏
页数:6
相关论文
共 40 条
  • [1] Pharmacogenetic analysis of adverse drug effect reveals genetic variant for susceptibility to liver toxicity
    Acuña G.
    Foernzler D.
    Leong D.
    Rabbia M.
    Smit R.
    Dorflinger E.
    Gasser R.
    Hoh J.
    Ott J.
    Borroni E.
    To Z.
    Thompson A.
    Li J.
    Hashimoto L.
    Lindpaintner K.
    [J]. The Pharmacogenomics Journal, 2002, 2 (5) : 327 - 334
  • [2] A method and server for predicting damaging missense mutations
    Adzhubei, Ivan A.
    Schmidt, Steffen
    Peshkin, Leonid
    Ramensky, Vasily E.
    Gerasimova, Anna
    Bork, Peer
    Kondrashov, Alexey S.
    Sunyaev, Shamil R.
    [J]. NATURE METHODS, 2010, 7 (04) : 248 - 249
  • [3] Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes
    Bonnefond, Amelie
    Clement, Nathalie
    Fawcett, Katherine
    Yengo, Loic
    Vaillant, Emmanuel
    Guillaume, Jean-Luc
    Dechaume, Aurelie
    Payne, Felicity
    Roussel, Ronan
    Czernichow, Sebastien
    Hercberg, Serge
    Hadjadj, Samy
    Balkau, Beverley
    Marre, Michel
    Lantieri, Olivier
    Langenberg, Claudia
    Bouatia-Naji, Nabila
    Charpentier, Guillaume
    Vaxillaire, Martine
    Rocheleau, Ghislain
    Wareham, Nicholas J.
    Sladek, Robert
    McCarthy, Mark I.
    Dina, Christian
    Barroso, Ines
    Jockers, Ralf
    Froguel, Philippe
    [J]. NATURE GENETICS, 2012, 44 (03) : 297 - U98
  • [4] Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease
    Botstein, D
    Risch, N
    [J]. NATURE GENETICS, 2003, 33 (Suppl 3) : 228 - 237
  • [5] Exome sequencing is an efficient tool for genetic screening of Charcot-Marie-Tooth Disease
    Choi, Byung-Ok
    Koo, Soo Kyung
    Park, Mi-Hyun
    Rhee, Hwanseok
    Yang, Song-Ju
    Choi, Kyoung-Gyu
    Jung, Sung-Chul
    Kim, Han Su
    Hyun, Young Se
    Nakhro, Khriezhanuo
    Lee, Hye Jin
    Woo, Hae-Mi
    Chung, Ki Wha
    [J]. HUMAN MUTATION, 2012, 33 (11) : 1610 - 1615
  • [6] HLA-B☆5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin
    Daly, Ann K.
    Donaldson, Peter T.
    Bhatnagar, Pallav
    Shen, Yufeng
    Pe'er, Itsik
    Floratos, Aris
    Daly, Mark J.
    Goldstein, David B.
    John, Sally
    Nelson, Matthew R.
    Graham, Julia
    Park, B. Kevin
    Dillon, John F.
    Bernal, William
    Cordell, Heather J.
    Pirmohamed, Munir
    Aithal, Guruprasad P.
    Day, Christopher P.
    [J]. NATURE GENETICS, 2009, 41 (07) : 816 - U71
  • [7] The incidence and nature of in-hospital adverse events: a systematic review
    de Vries, E. N.
    Ramrattan, M. A.
    Smorenburg, S. M.
    Gouma, D. J.
    Boermeester, M. A.
    [J]. QUALITY & SAFETY IN HEALTH CARE, 2008, 17 (03): : 216 - 223
  • [8] The UCSC Genome Browser database: update 2011
    Fujita, Pauline A.
    Rhead, Brooke
    Zweig, Ann S.
    Hinrichs, Angie S.
    Karolchik, Donna
    Cline, Melissa S.
    Goldman, Mary
    Barber, Galt P.
    Clawson, Hiram
    Coelho, Antonio
    Diekhans, Mark
    Dreszer, Timothy R.
    Giardine, Belinda M.
    Harte, Rachel A.
    Hillman-Jackson, Jennifer
    Hsu, Fan
    Kirkup, Vanessa
    Kuhn, Robert M.
    Learned, Katrina
    Li, Chin H.
    Meyer, Laurence R.
    Pohl, Andy
    Raney, Brian J.
    Rosenbloom, Kate R.
    Smith, Kayla E.
    Haussler, David
    Kent, W. James
    [J]. NUCLEIC ACIDS RESEARCH, 2011, 39 : D876 - D882
  • [9] AMINO-ACID DIFFERENCE FORMULA TO HELP EXPLAIN PROTEIN EVOLUTION
    GRANTHAM, R
    [J]. SCIENCE, 1974, 185 (4154) : 862 - 864
  • [10] Hachad Houda, 2010, Human Genomics, V5, P61