Strain-Engineering of Twist-Angle in Graphene/hBN Superlattice Devices

被引:33
作者
De Sanctis, Adolfo [1 ]
Mehew, Jake D. [1 ]
Alkhalifa, Saad [1 ,2 ]
Withers, Freddie [1 ]
Craciun, Monica F. [1 ]
Russo, Saverio [1 ]
机构
[1] Univ Exeter, Coll Engn Math & Phys Sci, Ctr Graphene Sci, Exeter EX4 4QF, Devon, England
[2] Univ Duhok, Duhok 42001, Kurdistan Regio, Iraq
基金
英国工程与自然科学研究理事会;
关键词
Graphene; hBN; superlattice; twist-angle; strain; Raman; ELECTRONIC-PROPERTIES; DIRAC FERMIONS; TRANSPORT; CONTACTS; SPECTROSCOPY; GRAPHITE;
D O I
10.1021/acs.nanolett.8b03854
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The observation of novel physical phenomena such as Hofstadter's butterfly, topological currents, and unconventional superconductivity in graphene has been enabled by the replacement of SiO2 with hexagonal boron nitride (hBN) as a substrate and by the ability to form superlattices in graphene/hBN heterostructures. These devices are commonly made by etching the graphene into a Hall-bar shape with metal contacts. The deposition of metal electrodes, the design, and specific configuration of contacts can have profound effects on the electronic properties of the devices possibly even affecting the alignment of graphene/hBN superlattices. In this work, we probe the strain configuration of graphene on hBN in contact with two types of metal contacts, two-dimensional (2D) top:contacts and one-dimensional edge-contacts. We show that top-contacts induce strain in the graphene layer along two opposing leads, leading to a complex strain pattern across the device channel. Edge-contacts, on the contrary, do not show such strain pattern. A finite-elements modeling simulation is used to confirm that the observed strain pattern is generated by the mechanical action of the metal contacts clamped to the graphene. Thermal annealing is shown to reduce the overall doping while increasing the overall strain, indicating an increased interaction between graphene and hBN. Surprisingly, we find that the two contact configurations lead to different twist-angles in graphene/hBN superlattices, which converge to the same value after thermal annealing. This observation confirms the self-locking mechanism of graphene/hBN superlattices also in the presence of strain gradients. Our experiments may have profound implications in the development of future electronic devices based on heterostructures and provide a new mechanism to induce complex strain patterns in 2D materials.
引用
收藏
页码:7919 / 7926
页数:8
相关论文
共 45 条
  • [1] Optical Probing of the Electronic Interaction between Graphene and Hexagonal Boron Nitride
    Ahn, Gwanghyun
    Kim, Hye Ri
    Ko, Taeg Yeoung
    Choi, Kyoungjun
    Watanabe, Kenji
    Taniguchi, Takashi
    Hong, Byung Hee
    Ryu, Sunmin
    [J]. ACS NANO, 2013, 7 (02) : 1533 - 1541
  • [2] Electrical contacts to two-dimensional semiconductors
    Allain, Adrien
    Kang, Jiahao
    Banerjee, Kaustav
    Kis, Andras
    [J]. NATURE MATERIALS, 2015, 14 (12) : 1195 - 1205
  • [3] Ballistic Transport Exceeding 28 μm in CVD Grown Graphene
    Banszerus, Luca
    Schmitz, Michael
    Engels, Stephan
    Goldsche, Matthias
    Watanabe, Kenji
    Taniguch, Takashi
    Beschoten, Bernd
    Stampfer, Christoph
    [J]. NANO LETTERS, 2016, 16 (02) : 1387 - 1391
  • [4] Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper
    Banszerus, Luca
    Schmitz, Michael
    Engels, Stephan
    Dauber, Jan
    Oellers, Martin
    Haupt, Federica
    Watanabe, Kenji
    Taniguchi, Takashi
    Beschoten, Bernd
    Stampfer, Christoph
    [J]. SCIENCE ADVANCES, 2015, 1 (06):
  • [5] Bao WZ, 2009, NAT NANOTECHNOL, V4, P562, DOI [10.1038/nnano.2009.191, 10.1038/NNANO.2009.191]
  • [6] Correlated insulator behaviour at half-filling in magic-angle graphene superlattices
    Cao, Yuan
    Fatemi, Valla
    Demir, Ahmet
    Fang, Shiang
    Tomarken, Spencer L.
    Luo, Jason Y.
    Sanchez-Yamagishi, Javier D.
    Watanabe, Kenji
    Taniguchi, Takashi
    Kaxiras, Efthimios
    Ashoori, Ray C.
    Jarillo-Herrero, Pablo
    [J]. NATURE, 2018, 556 (7699) : 80 - +
  • [7] Unconventional superconductivity in magic-angle graphene superlattices
    Cao, Yuan
    Fatemi, Valla
    Fang, Shiang
    Watanabe, Kenji
    Taniguchi, Takashi
    Kaxiras, Efthimios
    Jarillo-Herrero, Pablo
    [J]. NATURE, 2018, 556 (7699) : 43 - +
  • [8] Limits on Charge Carrier Mobility in Suspended Graphene due to Flexural Phonons
    Castro, Eduardo V.
    Ochoa, H.
    Katsnelson, M. I.
    Gorbachev, R. V.
    Elias, D. C.
    Novoselov, K. S.
    Geim, A. K.
    Guinea, F.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (26)
  • [9] Phase patterning for ohmic homojunction contact in MoTe2
    Cho, Suyeon
    Kim, Sera
    Kim, Jung Ho
    Zhao, Jiong
    Seok, Jinbong
    Keum, Dong Hoon
    Baik, Jaeyoon
    Choe, Duk-Hyun
    Chang, K. J.
    Suenaga, Kazu
    Kim, Sung Wng
    Lee, Young Hee
    Yang, Heejun
    [J]. SCIENCE, 2015, 349 (6248) : 625 - 628
  • [10] Strain-engineered inverse charge-funnelling in layered semiconductors
    De Sanctis, Adolfo
    Amit, Iddo
    Hepplestone, Steven P.
    Craciun, Monica F.
    Russo, Saverio
    [J]. NATURE COMMUNICATIONS, 2018, 9