Zeros of the first derivative of Dirichlet L-functions

被引:3
作者
Akatsuka, Hirotaka [1 ]
Suriajaya, Ade Irma [2 ,3 ]
机构
[1] Otaru Univ, 3-5-21 Midori, Otaru, Hokkaido 0478501, Japan
[2] Nagoya Univ, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648602, Japan
[3] RIKEN, Interdisciplinary Math Sci Team, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
关键词
Dirichlet L-function; Derivative; Zeros; RIEMANN ZETA-FUNCTION;
D O I
10.1016/j.jnt.2017.08.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Yildirim has classified zeros of the derivatives of Dirichlet L-functions into trivial zeros, nontrivial zeros and vagrant zeros. In this paper we remove the possibility of vagrant zeros for L'(s, chi) when the conductors are large to some extent. Then we improve asymptotic formulas for the number of zeros of L' (s,chi) in {s is an element of C : Re(s) > 0, I vertical bar m(s)vertical bar <= T}. We also establish analogues of Speiser's theorem, which characterize the generalized Riemann hypothesis for L(s, chi) in terms of zeros of L' (s, chi), when the conductor is large. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:300 / 329
页数:30
相关论文
共 8 条
[1]   NUMBER OF ZEROS FOR ZETA(K)(S) [J].
BERNDT, BC .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1970, 2 (OCT) :577-&
[2]   On the Speiser equivalent for the Riemann hypothesis [J].
Garunkštis R. ;
Šimėnas R. .
European Journal of Mathematics, 2015, 1 (2) :337-350
[3]   ZEROS OF DERIVATIVES OF RIEMANN ZETA-FUNCTION [J].
LEVINSON, N ;
MONTGOME.HL .
ACTA MATHEMATICA, 1974, 133 (1-2) :49-65
[4]  
Montgomery H. L., 2007, CAMBRIDGE STUDIES AD, V97, P7
[5]   The geometrics of the Riemann zeta function. [J].
Speiser, A .
MATHEMATISCHE ANNALEN, 1935, 110 :514-521
[6]   ANOTHER ZERO-FREE REGION FOR ZETA(K)(S)1 [J].
SPIRA, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 26 (02) :246-&
[7]  
Titchmarsh E. C., 1939, THEORY FUNCTIONS
[8]  
Yildirim C.Y., 1996, TURKISH J MATH, V20, P521